Suppr超能文献

深度学习与胶囊内镜:血管病变的多品牌多设备全内镜自动检测

Deep learning and capsule endoscopy: Automatic multi-brand and multi-device panendoscopic detection of vascular lesions.

作者信息

Mascarenhas Miguel, Martins Miguel, Afonso João, Ribeiro Tiago, Cardoso Pedro, Mendes Franscisco, Andrade Patrícia, Cardoso Helder, Mascarenhas-Saraiva Miguel, Ferreira João, Macedo Guilherme

机构信息

Gastroenterology, Centro Hospitalar Universitário de São João, Porto, Portugal.

Gastroenterology, Hospital São João, Porto, Portugal.

出版信息

Endosc Int Open. 2024 Apr 23;12(4):E570-E578. doi: 10.1055/a-2236-7849. eCollection 2024 Apr.

Abstract

Capsule endoscopy (CE) is commonly used as the initial exam for suspected mid-gastrointestinal bleeding after normal upper and lower endoscopy. Although the assessment of the small bowel is the primary focus of CE, detecting upstream or downstream vascular lesions may also be clinically significant. This study aimed to develop and test a convolutional neural network (CNN)-based model for panendoscopic automatic detection of vascular lesions during CE. A multicentric AI model development study was based on 1022 CE exams. Our group used 34655 frames from seven types of CE devices, of which 11091 were considered to have vascular lesions (angiectasia or varices) after triple validation. We divided data into a training and a validation set, and the latter was used to evaluate the model's performance. At the time of division, all frames from a given patient were assigned to the same dataset. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the precision-recall curve (AUC-PR). Sensitivity and specificity were 86.4% and 98.3%, respectively. PPV was 95.2%, while the NPV was 95.0%. Overall accuracy was 95.0%. The AUC-PR value was 0.96. The CNN processed 115 frames per second. This is the first proof-of-concept artificial intelligence deep learning model developed for pan-endoscopic automatic detection of vascular lesions during CE. The diagnostic performance of this CNN in multi-brand devices addresses an essential issue of technological interoperability, allowing it to be replicated in multiple technological settings.

摘要

胶囊内镜检查(CE)通常被用作上、下消化道内镜检查正常后疑似中消化道出血的初始检查。尽管小肠评估是CE的主要重点,但检测上游或下游血管病变在临床上也可能具有重要意义。本研究旨在开发并测试一种基于卷积神经网络(CNN)的模型,用于在CE期间进行全内镜血管病变的自动检测。一项多中心人工智能模型开发研究基于1022例CE检查。我们的团队使用了来自七种CE设备的34655帧图像,其中11091帧在经过三重验证后被认为存在血管病变(血管扩张或静脉曲张)。我们将数据分为训练集和验证集,后者用于评估模型的性能。在划分时,给定患者的所有帧都被分配到同一个数据集中。我们的主要结局指标是灵敏度、特异度、准确度、阳性预测值(PPV)、阴性预测值(NPV)以及精确召回曲线下面积(AUC-PR)。灵敏度和特异度分别为86.4%和98.3%。PPV为95.2%,而NPV为95.0%。总体准确度为95.0%。AUC-PR值为0.96。该CNN每秒处理115帧。这是首个为在CE期间进行全内镜血管病变自动检测而开发的概念验证人工智能深度学习模型。该CNN在多品牌设备中的诊断性能解决了技术互操作性的一个关键问题,使其能够在多种技术环境中复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e373/11039033/a00fda9a988d/10-1055-a-2236-7849_22385721.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验