Ye Hui, Liu Qiongzhen, Xu Xiao, Song Mengya, Lu Ying, Yang Liyan, Wang Wen, Wang Yuedan, Li Mufang, Wang Dong
Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
Hubei International Science and Technology Cooperation Base for Intelligent Textile Material Innovation & Application, Wuhan Textile University, Wuhan 430200, China.
Polymers (Basel). 2023 Dec 19;16(1):6. doi: 10.3390/polym16010006.
Microwave and infrared-thermal radiation-compatible shielding fabrics represent an important direction in the development of wearable protective fabrics. Nevertheless, effectively and conveniently integrating compatible shielding functions into fabrics while maintaining breathability and moisture permeability remains a significant challenge. Here, we take hydrophilic PVA--PE nanofibrous film-coated PET fabric (NFs/PET) as a flexible substrate and deposit a dielectric/conductive (SiO/Al) bilayer film via magnetron sputtering. This strategy endows the fabric surface with high electrical conductivity, nanoscale roughness comparable to visible and infrared waves, and a dielectric-metal contact interface possessing localized plasmon resonance and Mie scattering effects. The results demonstrate that the optimized SiO/Al/NFs/PET composite conductive fabric (referred to as S4-1) possesses favorable X-band electromagnetic interference (EMI) shielding effectiveness (50 dB) as well as excellent long-wave infrared (LWIR) shielding or IR stealth performance (IR emissivity of 0.60). Notably, the S4-1 fabric has a cooling effect of about 12.4 °C for a heat source (80 °C) and an insulating effect of about 17.2 °C for a cold source (-20 °C), showing excellent shielding capability for heat conduction and heat radiations. Moreover, the moisture permeability of the S4-1 fabric is about 300 g/(m·h), which is better than the requirement concerning moisture permeability for wearable fabrics (≥2500-5000 g/(m·24 h)), indicating excellent heat and moisture comfort. In short, our fabrics have lightweight, thin, moisture-permeable and excellent shielding performance, which provides novel ideas for the development of wearable multi-band shielding fabrics applied to complex electromagnetic environments.
微波与红外热辐射兼容屏蔽织物是可穿戴防护织物发展的一个重要方向。然而,在保持透气性和透湿性的同时,有效且方便地将兼容屏蔽功能集成到织物中仍然是一项重大挑战。在此,我们以亲水性聚乙烯醇-聚乙烯(PVA-PE)纳米纤维膜包覆的聚酯纤维织物(NFs/PET)作为柔性基底,并通过磁控溅射沉积一层介电/导电(SiO/Al)双层膜。该策略赋予织物表面高导电性、与可见光和红外波相当的纳米级粗糙度,以及具有局域表面等离子体共振和米氏散射效应的介电-金属接触界面。结果表明,优化后的SiO/Al/NFs/PET复合导电织物(简称S4-1)具有良好的X波段电磁干扰(EMI)屏蔽效能(50 dB)以及出色的长波红外(LWIR)屏蔽或红外隐身性能(红外发射率为0.60)。值得注意的是,S4-1织物对热源(80°C)具有约12.4°C的降温效果,对冷源(-20°C)具有约17.2°C的隔热效果,显示出对热传导和热辐射的优异屏蔽能力。此外,S4-1织物的透湿性约为300 g/(m·h),优于可穿戴织物对透湿性的要求(≥2500 - 5000 g/(m·24 h)),表明具有出色的热湿舒适性。简而言之,我们的织物具有轻质、超薄、透湿且屏蔽性能优异的特点,为应用于复杂电磁环境的可穿戴多波段屏蔽织物的开发提供了新思路。