Aaddouz Mohamed, Azzaoui Khalil, Sabbahi Rachid, Youssoufi Moulay Hfid, Yahyaoui Meryem Idrissi, Asehraou Abdeslam, El Miz Mohamed, Hammouti Belkheir, Shityakov Sergey, Siaj Mohamed, Mejdoubi Elmiloud
Laboratory of Applied Chemistry and Environment, Team: Mineral Chemistry of Solids, Department of Chemistry, Faculty of Sciences, Mohammed 1st University, P.O. Box 717, Oujda 60000, Morocco.
Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
Polymers (Basel). 2023 Dec 27;16(1):85. doi: 10.3390/polym16010085.
This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.
本文提出了一种用于设计和合成羟基磷灰石/胶原蛋白纳米复合材料的新型化学信息学方法,该复合材料在组织工程、药物递送以及骨科和牙科植入物方面具有潜在的生物医学应用。通过共沉淀法以不同比例的羟基磷灰石和胶原蛋白合成纳米复合材料。使用各种实验和计算技术分析它们的力学、生物学和降解性能。衰减全反射傅里叶变换红外光谱、热重分析和X射线衍射揭示了羟基磷灰石(22.62 nm)和羟基磷灰石/胶原蛋白复合材料(14.81 nm)的低结晶度和纳米级粒径。扫描电子显微镜结合能量色散X射线光谱证实了这些发现,确定了所有样品中钙/磷比在1.65至1.53之间,并证明形成了非化学计量的磷灰石,分子模拟进一步验证了这一点。对纳米复合材料针对几种细菌和真菌菌株进行体外抗菌活性评估,证明了它们的医学潜力。此外,进行了计算机模拟分析以预测胶原蛋白样品的吸收、分布、代谢和排泄特性以及生物利用度。本研究为使用化学信息学工具和方法开发新型生物材料铺平了道路,有助于优化设计和合成参数以及预测生物学结果。未来的研究方向应包括研究纳米复合材料的体内生物相容性和生物活性,同时探索这些创新材料的进一步应用和功能。