Dowling Reyne, Narkowicz Ryszard, Lenz Kilian, Oelschlägel Antje, Lindner Jürgen, Kostylev Mikhail
Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia.
Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
Nanomaterials (Basel). 2023 Dec 20;14(1):19. doi: 10.3390/nano14010019.
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.
我们展示了基于共振的磁性纳米颗粒检测方法,该方法采用基于平面(片上)微谐振器的新颖设计,可作为传统磁阻磁性纳米颗粒探测器的替代方案。我们检测了通过使用3D打印模具模制的PDMS微流体通道流动后固定在传感器表面的130 nm大小的磁性纳米颗粒簇。研究了两种检测方案:(i)在微谐振器中结合铁磁反点纳米结构的间接检测,以及(ii)不使用反点晶格的纳米颗粒直接检测。使用方案(i),磁性纳米颗粒使反点纳米结构的共振场明显下移,最大可达207 G。在类似的反点装置中,纳米颗粒通过液滴而非微流体通道引入,最大位移仅为44 G,灵敏度为7.57 G/ng。这表明通过微流体引入纳米颗粒会导致铁磁共振产生更强的响应。两种装置的结果都表明,平面微谐振器中结合的铁磁反点纳米结构可以检测从分散体中捕获的纳米颗粒。使用检测方案(ii),在没有反点阵列的情况下,我们在纳米颗粒内观察到强烈的共振。共振强度表明,直接检测对磁性纳米颗粒的灵敏度高于使用纳米结构的间接检测,而且要简单得多。
Nanomaterials (Basel). 2023-12-20
Nanomaterials (Basel). 2022-9-21
Beilstein J Nanotechnol. 2018-4-9
Nanotechnology. 2006-3-28
Nanoscale. 2024-2-29
Micromachines (Basel). 2021-6-29
Sci Rep. 2020-1-22
Micromachines (Basel). 2020-2-10
Nanomaterials (Basel). 2024-5-23
ACS Appl Nano Mater. 2020-9-22
Nanomaterials (Basel). 2022-9-21
Sci Rep. 2022-8-31
Crit Rev Food Sci Nutr. 2022
Biosens Bioelectron. 2020-10-1