文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用具有铁磁反点纳米结构的微流控装置基于共振对磁性纳米颗粒进行传感

Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures.

作者信息

Dowling Reyne, Narkowicz Ryszard, Lenz Kilian, Oelschlägel Antje, Lindner Jürgen, Kostylev Mikhail

机构信息

Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia.

Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.

出版信息

Nanomaterials (Basel). 2023 Dec 20;14(1):19. doi: 10.3390/nano14010019.


DOI:10.3390/nano14010019
PMID:38202474
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780436/
Abstract

We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.

摘要

我们展示了基于共振的磁性纳米颗粒检测方法,该方法采用基于平面(片上)微谐振器的新颖设计,可作为传统磁阻磁性纳米颗粒探测器的替代方案。我们检测了通过使用3D打印模具模制的PDMS微流体通道流动后固定在传感器表面的130 nm大小的磁性纳米颗粒簇。研究了两种检测方案:(i)在微谐振器中结合铁磁反点纳米结构的间接检测,以及(ii)不使用反点晶格的纳米颗粒直接检测。使用方案(i),磁性纳米颗粒使反点纳米结构的共振场明显下移,最大可达207 G。在类似的反点装置中,纳米颗粒通过液滴而非微流体通道引入,最大位移仅为44 G,灵敏度为7.57 G/ng。这表明通过微流体引入纳米颗粒会导致铁磁共振产生更强的响应。两种装置的结果都表明,平面微谐振器中结合的铁磁反点纳米结构可以检测从分散体中捕获的纳米颗粒。使用检测方案(ii),在没有反点阵列的情况下,我们在纳米颗粒内观察到强烈的共振。共振强度表明,直接检测对磁性纳米颗粒的灵敏度高于使用纳米结构的间接检测,而且要简单得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/cfffad98d3ee/nanomaterials-14-00019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/41e276a156f8/nanomaterials-14-00019-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/273127b4bd09/nanomaterials-14-00019-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/8790ef4b7f89/nanomaterials-14-00019-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/af9f3137aa4a/nanomaterials-14-00019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/ab029d895912/nanomaterials-14-00019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/5ea0c3294ffd/nanomaterials-14-00019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b5c8e41cd654/nanomaterials-14-00019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/46229948d7d9/nanomaterials-14-00019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/65adbbeca686/nanomaterials-14-00019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/114f4b67de92/nanomaterials-14-00019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/27afa300ac0f/nanomaterials-14-00019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b77ec918c851/nanomaterials-14-00019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/bd2d092e4f79/nanomaterials-14-00019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b0c229bf349b/nanomaterials-14-00019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/ee4bf785f643/nanomaterials-14-00019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/cfffad98d3ee/nanomaterials-14-00019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/41e276a156f8/nanomaterials-14-00019-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/273127b4bd09/nanomaterials-14-00019-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/8790ef4b7f89/nanomaterials-14-00019-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/af9f3137aa4a/nanomaterials-14-00019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/ab029d895912/nanomaterials-14-00019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/5ea0c3294ffd/nanomaterials-14-00019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b5c8e41cd654/nanomaterials-14-00019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/46229948d7d9/nanomaterials-14-00019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/65adbbeca686/nanomaterials-14-00019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/114f4b67de92/nanomaterials-14-00019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/27afa300ac0f/nanomaterials-14-00019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b77ec918c851/nanomaterials-14-00019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/bd2d092e4f79/nanomaterials-14-00019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/b0c229bf349b/nanomaterials-14-00019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/ee4bf785f643/nanomaterials-14-00019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/10780436/cfffad98d3ee/nanomaterials-14-00019-g013.jpg

相似文献

[1]
Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures.

Nanomaterials (Basel). 2023-12-20

[2]
Application of Magnonic Crystals in Magnetic Bead Detection.

Nanomaterials (Basel). 2022-9-21

[3]
Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.

Lab Chip. 2005-6

[4]
Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays.

Beilstein J Nanotechnol. 2018-4-9

[5]
Magnetic antidot nanostructures: effect of lattice geometry.

Nanotechnology. 2006-3-28

[6]
Tunable 2-D magnonic crystals: effect of packing density.

Nanoscale. 2024-2-29

[7]
Influence of nanoholes array geometrical parameters on magnetic properties of Dy-Fe antidot thin films.

Nanotechnology. 2019-11-8

[8]
Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review.

Micromachines (Basel). 2021-6-29

[9]
3D printed mold leachates in PDMS microfluidic devices.

Sci Rep. 2020-1-22

[10]
Inductive Magnetic Nanoparticle Sensor based on Microfluidic Chip Oil Detection Technology.

Micromachines (Basel). 2020-2-10

引用本文的文献

[1]
Observation of Linear Magnetoresistance in MoO.

Nanomaterials (Basel). 2024-5-23

本文引用的文献

[1]
Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19.

ACS Appl Nano Mater. 2020-9-22

[2]
Application of Magnonic Crystals in Magnetic Bead Detection.

Nanomaterials (Basel). 2022-9-21

[3]
Resonance behavior of embedded and freestanding microscale ferromagnets.

Sci Rep. 2022-8-31

[4]
Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications.

Front Chem. 2021-7-13

[5]
Upconversion luminescent nanomaterials: A promising new platform for food safety analysis.

Crit Rev Food Sci Nutr. 2022

[6]
Development of Fast and Portable Frequency Magnetic Mixing-Based Serological SARS-CoV-2-Specific Antibody Detection Assay.

Front Microbiol. 2021-5-5

[7]
A multifunctional near-infrared fluorescent sensing material based on core-shell upconversion nanoparticles@magnetic nanoparticles and molecularly imprinted polymers for detection of deltamethrin.

Mikrochim Acta. 2021-4-15

[8]
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.

PLoS One. 2021

[9]
Biomarkers detection with magnetoresistance-based sensors.

Biosens Bioelectron. 2020-10-1

[10]
Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review.

Talanta. 2019-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索