Salaheldeen M, Vega V, Caballero-Flores R, Prida V M, Fernández A
Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt. Depto. Física, Universidad de Oviedo, C/Federico García Lorca 18, E-33007 Oviedo, Asturias, Spain.
Nanotechnology. 2019 Nov 8;30(45):455703. doi: 10.1088/1361-6528/ab36cc. Epub 2019 Jul 30.
Nanoscale artificially engineered spintronic materials could be used to enlarge the storage density of magnetic recording media. For this purpose, magnetic nanostructures such as antidot arrays exhibiting high uniaxial magnetic anisotropy are new contestants in the field of ultrahigh density magnetic data storage devices. In this context, we focus on the synthesis of nanostructured magnetic materials consisting of Dy-Fe alloyed antidot thin films, deposited onto the surface of nanoporous alumina membranes served as patterned templates. Noticeable variations of in the in-plane magnetic anisotropy have been observed by modifying the layer thickness at both microscopic and macroscopic scales. The microscopic magnetic properties have been locally studied by Nano-MOKE magnetometry. For thinner antidot samples with 15, 20 and 25 nm in thickness, a tri-axial in-plane magnetic anisotropy has been detected. Meanwhile, for thicker antidot samples (40-60 nm of layer thickness), an in-plane uniaxial magnetic anisotropy has been noted. We attribute these changes in the magnetic anisotropy to the strong correlation between the edge-to-edge distance among adjacent nanoholes, W, and the local magnetic anisotropy of antidot samples. The effective magnetic anisotropy exhibits an unexpected crossover from the in-plane to out-of-plane direction due to the increasing of the effective perpendicular magnetic anisotropy with varying the layer thickness of antidot thin films. Therefore, we detected a critical layer thickness, t = 25 nm for the Dy-Fe alloy antidot arrays, at which the appearance of the perpendicular magnetization is observed. Furthermore, an enhancement in the Curie temperature of the antidot arrays compared to the continuous thin films has been obtained. We attribute these effects to the complex magnetization reversal processes and the high thermal stability of the hexagonal structure of antidot arrays. These findings can be of high interest for the development of novel magnetic sensors and for thermo-magnetic recording patterned media based on template-assisted deposition techniques.
纳米尺度的人工工程自旋电子材料可用于提高磁记录介质的存储密度。为此,诸如具有高单轴磁各向异性的反点阵列等磁性纳米结构,是超高密度磁数据存储设备领域的新竞争者。在此背景下,我们专注于合成由Dy-Fe合金反点薄膜构成的纳米结构磁性材料,这些薄膜沉积在用作图案化模板的纳米多孔氧化铝膜表面。通过在微观和宏观尺度上改变层厚,已观察到面内磁各向异性的显著变化。通过纳米磁光克尔效应磁强计对微观磁性进行了局部研究。对于厚度为15、20和25nm的较薄反点样品,检测到了三轴面内磁各向异性。同时,对于较厚的反点样品(层厚40 - 60nm),注意到了面内单轴磁各向异性。我们将磁各向异性的这些变化归因于相邻纳米孔之间的边到边距离W与反点样品的局部磁各向异性之间的强相关性。由于反点薄膜层厚变化时有效垂直磁各向异性的增加,有效磁各向异性呈现出从面内到面外方向的意外转变。因此,我们检测到Dy-Fe合金反点阵列的临界层厚t = 25nm,在该层厚时观察到垂直磁化的出现。此外,与连续薄膜相比,反点阵列的居里温度有所提高。我们将这些效应归因于复杂的磁化反转过程以及反点阵列六边形结构的高热稳定性。这些发现对于新型磁传感器的开发以及基于模板辅助沉积技术的热磁记录图案化介质可能具有很高的意义。