Stolbov Oleg V, Raikher Yuriy L
Laboratory of Dynamics of Disperse Media, Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, 614018 Perm, Russia.
Research and Education Center "Smart Materials and Biological Applications", Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.
Nanomaterials (Basel). 2023 Dec 21;14(1):31. doi: 10.3390/nano14010031.
A mesoscopic model for a polymer-based magnetoelectric (ME) composite film is developed. The film is assumed to consist of a piezoelectric polymer matrix of the PVDF type filled with CFO-like single-domain nanoparticles. The model is treated numerically and enables one to obtain in detail the intrinsic distributions of mechanical stress, polarization and electric potential and helps to understand the influence of the main configurational parameters, viz., the poling direction and the orientational order of the particle magnetic anisotropy axes on the electric response of the film. As the model is fairly simple-it uses the RVE-like (Representative Volume Element) approach with a single-particle cell-the results obtained are rather of qualitative than quantitative nature. However, the general conclusions seem to be independent of the particularities of the model. Namely, the presented results establish that the customary ME effect in composite films always comprises at least two contributions of different origins, viz., the magnetostrictive and the magnetoactive (magnetorotational) ones. The relative proportion between those contributions is quite movable depending on the striction coefficient of the particles and the stiffness of the polymer matrix. This points out the necessity to explicitly take into account the magnetoactive contribution when modeling the ME response of composite films and when interpreting the measurements on those objects.
开发了一种基于聚合物的磁电(ME)复合薄膜的细观模型。假设该薄膜由填充有类CFO单畴纳米颗粒的PVDF型压电聚合物基体组成。对该模型进行了数值处理,能够详细获得机械应力、极化和电势的本征分布,并有助于理解主要构型参数,即极化方向和颗粒磁各向异性轴的取向顺序对薄膜电响应的影响。由于该模型相当简单——它采用具有单粒子单元的类代表性体积单元(RVE)方法——所获得的结果更多是定性而非定量的。然而,一般结论似乎与模型的特殊性无关。具体而言,所呈现的结果表明,复合薄膜中常见的磁电效应总是至少包含两种不同来源的贡献,即磁致伸缩和磁活性(磁旋转)贡献。这些贡献之间的相对比例相当灵活,取决于颗粒的伸缩系数和聚合物基体的刚度。这指出了在对复合薄膜的磁电响应进行建模以及解释对这些物体的测量结果时,明确考虑磁活性贡献的必要性。
Nanomaterials (Basel). 2023-12-21
Nanoscale. 2017-3-2
Sensors (Basel). 2017-7-19
Polymers (Basel). 2017-2-14
IEEE Trans Ultrason Ferroelectr Freq Control. 2010
Nanomaterials (Basel). 2025-3-25
Nanomaterials (Basel). 2023-3-18
ACS Appl Polym Mater. 2022-7-29
Stem Cell Res Ther. 2023-1-11
Colloids Surf B Biointerfaces. 2022-10
Nanomaterials (Basel). 2022-4-1
Mater Today Bio. 2021-10-13
Nanomaterials (Basel). 2021-4-28
Micromachines (Basel). 2021-4-14