文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

压电聚合物复合材料中的磁致伸缩和磁致活性效应。

Magnetostrictive and Magnetoactive Effects in Piezoelectric Polymer Composites.

作者信息

Stolbov Oleg V, Raikher Yuriy L

机构信息

Laboratory of Dynamics of Disperse Media, Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, 614018 Perm, Russia.

Research and Education Center "Smart Materials and Biological Applications", Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.

出版信息

Nanomaterials (Basel). 2023 Dec 21;14(1):31. doi: 10.3390/nano14010031.


DOI:10.3390/nano14010031
PMID:38202485
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780694/
Abstract

A mesoscopic model for a polymer-based magnetoelectric (ME) composite film is developed. The film is assumed to consist of a piezoelectric polymer matrix of the PVDF type filled with CFO-like single-domain nanoparticles. The model is treated numerically and enables one to obtain in detail the intrinsic distributions of mechanical stress, polarization and electric potential and helps to understand the influence of the main configurational parameters, viz., the poling direction and the orientational order of the particle magnetic anisotropy axes on the electric response of the film. As the model is fairly simple-it uses the RVE-like (Representative Volume Element) approach with a single-particle cell-the results obtained are rather of qualitative than quantitative nature. However, the general conclusions seem to be independent of the particularities of the model. Namely, the presented results establish that the customary ME effect in composite films always comprises at least two contributions of different origins, viz., the magnetostrictive and the magnetoactive (magnetorotational) ones. The relative proportion between those contributions is quite movable depending on the striction coefficient of the particles and the stiffness of the polymer matrix. This points out the necessity to explicitly take into account the magnetoactive contribution when modeling the ME response of composite films and when interpreting the measurements on those objects.

摘要

开发了一种基于聚合物的磁电(ME)复合薄膜的细观模型。假设该薄膜由填充有类CFO单畴纳米颗粒的PVDF型压电聚合物基体组成。对该模型进行了数值处理,能够详细获得机械应力、极化和电势的本征分布,并有助于理解主要构型参数,即极化方向和颗粒磁各向异性轴的取向顺序对薄膜电响应的影响。由于该模型相当简单——它采用具有单粒子单元的类代表性体积单元(RVE)方法——所获得的结果更多是定性而非定量的。然而,一般结论似乎与模型的特殊性无关。具体而言,所呈现的结果表明,复合薄膜中常见的磁电效应总是至少包含两种不同来源的贡献,即磁致伸缩和磁活性(磁旋转)贡献。这些贡献之间的相对比例相当灵活,取决于颗粒的伸缩系数和聚合物基体的刚度。这指出了在对复合薄膜的磁电响应进行建模以及解释对这些物体的测量结果时,明确考虑磁活性贡献的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/0338ece1fd57/nanomaterials-14-00031-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/b90bf6fb3478/nanomaterials-14-00031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/c3d819320988/nanomaterials-14-00031-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/1cc241ad6ae1/nanomaterials-14-00031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/b33ea8112c22/nanomaterials-14-00031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/d2ebb7491603/nanomaterials-14-00031-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/62b98446fef7/nanomaterials-14-00031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/a58f871682ca/nanomaterials-14-00031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/0338ece1fd57/nanomaterials-14-00031-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/b90bf6fb3478/nanomaterials-14-00031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/c3d819320988/nanomaterials-14-00031-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/1cc241ad6ae1/nanomaterials-14-00031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/b33ea8112c22/nanomaterials-14-00031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/d2ebb7491603/nanomaterials-14-00031-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/62b98446fef7/nanomaterials-14-00031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/a58f871682ca/nanomaterials-14-00031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10780694/0338ece1fd57/nanomaterials-14-00031-g008.jpg

相似文献

[1]
Magnetostrictive and Magnetoactive Effects in Piezoelectric Polymer Composites.

Nanomaterials (Basel). 2023-12-21

[2]
Effect of the Two-Dimensional Magnetostrictive Fillers of CoFeO-Intercalated Graphene Oxide Sheets in 3-2 Type Poly(vinylidene fluoride)-Based Magnetoelectric Films.

Polymers (Basel). 2021-5-28

[3]
Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields.

Sensors (Basel). 2021-9-24

[4]
Modelling the effect of particle arrangement on the magnetoelectric response of a polymer multiferroic film.

Soft Matter. 2023-6-7

[5]
Switchable 3-0 magnetoelectric nanocomposite thin film with high coupling.

Nanoscale. 2017-3-2

[6]
A Glance at Processing-Microstructure-Property Relationships for Magnetoelectric Particulate PZT-CFO Composites.

Materials (Basel). 2020-6-6

[7]
Predicting Magnetoelectric Coupling in Layered and Graded Composites.

Sensors (Basel). 2017-7-19

[8]
Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB.

Int J Mol Sci. 2022-12-15

[9]
Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content.

Polymers (Basel). 2017-2-14

[10]
Annular bilayer magnetoelectric composites: theoretical analysis.

IEEE Trans Ultrason Ferroelectr Freq Control. 2010

引用本文的文献

[1]
Magnetoelectric PVDF-Cobalt Ferrite Films: Magnetostrictive and Magnetorotational Effects, Synergy, and Counteraction.

Nanomaterials (Basel). 2025-3-25

本文引用的文献

[1]
Multifunctional Magnetoelectric Sensing and Bending Actuator Response of Polymer-Based Hybrid Materials with Magnetic Ionic Liquids.

Nanomaterials (Basel). 2023-7-27

[2]
Modelling the effect of particle arrangement on the magnetoelectric response of a polymer multiferroic film.

Soft Matter. 2023-6-7

[3]
Rationalizing the Dependence of Poly (Vinylidene Difluoride) (PVDF) Rheological Performance on the Nano-Silica.

Nanomaterials (Basel). 2023-3-18

[4]
Microfluidic Processing of Piezoelectric and Magnetic Responsive Electroactive Microspheres.

ACS Appl Polym Mater. 2022-7-29

[5]
Harnessing electromagnetic fields to assist bone tissue engineering.

Stem Cell Res Ther. 2023-1-11

[6]
Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering.

Colloids Surf B Biointerfaces. 2022-10

[7]
Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications.

Nanomaterials (Basel). 2022-4-1

[8]
Magnetoelectric effect: principles and applications in biology and medicine- a review.

Mater Today Bio. 2021-10-13

[9]
Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites.

Nanomaterials (Basel). 2021-4-28

[10]
A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.

Micromachines (Basel). 2021-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索