Omelyanchik Alexander, Antipova Valentina, Gritsenko Christina, Kolesnikova Valeria, Murzin Dmitry, Han Yilin, Turutin Andrei V, Kubasov Ilya V, Kislyuk Alexander M, Ilina Tatiana S, Kiselev Dmitry A, Voronova Marina I, Malinkovich Mikhail D, Parkhomenko Yuriy N, Silibin Maxim, Kozlova Elena N, Peddis Davide, Levada Kateryna, Makarova Liudmila, Amirov Abdulkarim, Rodionova Valeria
REC Smart Materials and Biomedical Applications, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.
Department of Chemistry and Industrial Chemistry (DCIC), University of Genova, 16146 Genova, Italy.
Nanomaterials (Basel). 2021 Apr 28;11(5):1154. doi: 10.3390/nano11051154.
Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (α) of the magnetoelectric effect. Another strategy is the use of 3-component composites through the inclusion of piezoelectric BaTiO particles. Developed strategies allow us to increase the α value from ~5 mV/cm·Oe for the composite of randomly distributed CoFeO nanoparticles in PVDF matrix to ~18.5 mV/cm·Oe for a composite of magnetic particles in PVDF-TrFE matrix with 5%wt of piezoelectric particles. The applicability of such materials as bioactive surface is demonstrated on neural crest stem cell cultures.
基于聚合物的磁电复合材料因其在磁场传感器、能量收集和生物医学设备等各类应用中具有巨大潜力而备受关注。当前的研究集中在提高磁电转换效率上。在这项工作中,提出了一种通过外部磁场在聚偏氟乙烯(PVDF)和聚偏氟乙烯-三氟乙烯(PFVD-TrFE)基体中排列磁性纳米颗粒簇的新策略,以提高磁电效应的电压系数(α)。另一种策略是通过加入压电钛酸钡(BaTiO)颗粒来使用三元复合材料。所开发的策略使我们能够将α值从PVDF基体中随机分布的钴铁氧体(CoFeO)纳米颗粒复合材料的约5 mV/cm·Oe提高到PVDF-TrFE基体中含有5%重量百分比压电颗粒的磁性颗粒复合材料的约18.5 mV/cm·Oe。此类材料作为生物活性表面在神经嵴干细胞培养物上的适用性得到了证明。