文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites.

作者信息

Magaletti Federica, Prioglio Gea, Giese Ulrich, Barbera Vincenzina, Galimberti Maurizio

机构信息

Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.

Deutsches Institut für Kautschuktechnologie e. V., Eupener Straße 33, 30519 Hannover, Germany.

出版信息

Nanomaterials (Basel). 2023 Dec 21;14(1):30. doi: 10.3390/nano14010030.


DOI:10.3390/nano14010030
PMID:38202486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780802/
Abstract

Two-dimensional hexagonal boron nitride (hBN) has attracted tremendous attention over the last few years, thanks to its stable structure and its outstanding properties, such as mechanical strength, thermal conductivity, electrical insulation, and lubricant behavior. This work demonstrates that hBN can also improve the rheological and mechanical properties of elastomer composites when used to partially replace silica. In this work, commercially available pristine hBN (hBN-p) was exfoliated and ball-mill treated in air for different durations (2.5, 5, and 10 h milling). Functionalization occurred with the -NH and -OH groups (hBN-OH). The functional groups were detected using Fourier-Transform Infrared pectroscopy (FT-IR) and were estimated to be up to about 7% through thermogravimetric analysis. The presence of an increased amount of oxygen in hBN-OH was confirmed using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy. (SEM-EDS). The number of stacked layers, estimated using WAXD analysis, decreased to 8-9 in hBN-OH (10 h milling) from about 130 in hBN-p. High-resolution transmission electron microscopy (HR-TEM) and SEM-EDS revealed the increase in disorder in hBN-OH. hBN-p and hBN-OH were used to partially replace silica by 15% and 30%, respectively, by volume, in elastomer composites based on poly(styrene-co-butadiene) from solution anionic polymerization (S-SBR) and poly(1,4-cis-isoprene) from (natural rubber, NR) as the elastomers (volume (mm) of composites released by the instrument). The use of both hBNs in substitution of 30% of silica led to a lower Payne effect, a higher dynamic rigidity, and an increase in E' of up to about 15% at 70 °C, with similar/lower hysteresis. Indeed, the composites with hBN-OH revealed a better balance of tan delta (higher at low temperatures and lower at high temperatures) and better ultimate properties. The functional groups reasonably promote the interaction of hBN with silica and with the silica's coupling agent, sulfur-based silane, and thus promoted the interaction with the elastomer chains. The volume of the composite, measured using a high-pressure capillary viscometer, increased by about 500% and 400% after one week of storage in the presence of hBN-p and hBN-OH. Hence, both hBNs improved the processability and the shelf life of the composites. Composites obtained using hBN-OH had even filler dispersion without the detachments of the filler from the elastomer matrix, as shown through TEM micrographs. These results pave the way for substantial improvements in the important properties of silica-based composites for tire compounds, used to reduce rolling resistance and thus the improve environmental impacts.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/022a63bedbe0/nanomaterials-14-00030-g016a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/0c61cbd53f28/nanomaterials-14-00030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/2f8c0e0364e0/nanomaterials-14-00030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/acaf870d1462/nanomaterials-14-00030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/ee66b4986415/nanomaterials-14-00030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/d5a29f835e56/nanomaterials-14-00030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/a607c1045105/nanomaterials-14-00030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/5e26e7ff0481/nanomaterials-14-00030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/02c28621cb46/nanomaterials-14-00030-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/69c371a529ab/nanomaterials-14-00030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/131c346fc4f5/nanomaterials-14-00030-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/9d4e971445d3/nanomaterials-14-00030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/67a394cfb69b/nanomaterials-14-00030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/bba4a45810c5/nanomaterials-14-00030-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/96b6ffa38ea6/nanomaterials-14-00030-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/a6415979fb2e/nanomaterials-14-00030-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/022a63bedbe0/nanomaterials-14-00030-g016a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/0c61cbd53f28/nanomaterials-14-00030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/2f8c0e0364e0/nanomaterials-14-00030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/acaf870d1462/nanomaterials-14-00030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/ee66b4986415/nanomaterials-14-00030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/d5a29f835e56/nanomaterials-14-00030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/a607c1045105/nanomaterials-14-00030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/5e26e7ff0481/nanomaterials-14-00030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/02c28621cb46/nanomaterials-14-00030-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/69c371a529ab/nanomaterials-14-00030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/131c346fc4f5/nanomaterials-14-00030-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/9d4e971445d3/nanomaterials-14-00030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/67a394cfb69b/nanomaterials-14-00030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/bba4a45810c5/nanomaterials-14-00030-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/96b6ffa38ea6/nanomaterials-14-00030-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/a6415979fb2e/nanomaterials-14-00030-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b4/10780802/022a63bedbe0/nanomaterials-14-00030-g016a.jpg

相似文献

[1]
Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites.

Nanomaterials (Basel). 2023-12-21

[2]
Carbon Black Functionalized with Serinol Pyrrole to Replace Silica in Elastomeric Composites.

Polymers (Basel). 2024-4-26

[3]
Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy.

Polymers (Basel). 2023-7-22

[4]
Cross-Linking-Filler Composite Materials of Functionalized Hexagonal Boron Nitride and Polyrotaxane Elastomer.

ACS Macro Lett. 2023-1-17

[5]
Bio-Based Pyrrole Compounds Containing Sulfur Atoms as Coupling Agents of Carbon Black with Unsaturated Elastomers.

Nanomaterials (Basel). 2023-10-14

[6]
Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers: Mechanical and Thermal Conductivity Properties.

Nanomaterials (Basel). 2020-8-27

[7]
Enhanced Thermal Conductivity of Silicone Composites Filled with Few-Layered Hexagonal Boron Nitride.

Polymers (Basel). 2020-9-12

[8]
High-yield preparation of edge-functionalized and water dispersible few-layers of hexagonal boron nitride (hBN) by direct wet chemical exfoliation.

Nanotechnology. 2021-7-13

[9]
Influence of the Silica Specific Surface Area and Ionic Liquids on the Curing Characteristics and Performance of Styrene-Butadiene Rubber Composites.

Materials (Basel). 2021-9-14

[10]
Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites.

RSC Adv. 2018-7-18

引用本文的文献

[1]
Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties.

Polymers (Basel). 2024-9-9

本文引用的文献

[1]
N-Octadecane Encapsulated by Assembled BN/GO Aerogels for Highly Improved Thermal Conductivity and Energy Storage Capacity.

Nanomaterials (Basel). 2023-8-12

[2]
Conversion of Charge Carrier Polarity in MoTe Field Effect Transistor via Laser Doping.

Nanomaterials (Basel). 2023-5-22

[3]
Direct Synthesis of Vertical Self-Assembly Oriented Hexagonal Boron Nitride on Gallium Nitride and Ultrahigh Photoresponse Ultraviolet Photodetectors.

Nanomaterials (Basel). 2023-5-5

[4]
Advances in the Field of Two-Dimensional Crystal-Based Photodetectors.

Nanomaterials (Basel). 2023-4-15

[5]
Dopamine-Mediated Graphene Bridging Hexagonal Boron Nitride for Large-Scale Composite Films with Enhanced Thermal Conductivity and Electrical Insulation.

Nanomaterials (Basel). 2023-3-29

[6]
Silicone-Based Thermally Conductive Gel Fabrication via Hybridization of Low-Melting-Point Alloy-Hexagonal Boron Nitride-Graphene Oxide.

Nanomaterials (Basel). 2023-1-25

[7]
Synthesis of cBN-hBN-SiC Nanocomposite with Superior Hardness, Strength, and Toughness.

Nanomaterials (Basel). 2022-12-22

[8]
Emerging 2D Nanomaterials for Biomedical Applications.

Mater Today (Kidlington). 2021-11

[9]
Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride.

Adv Mater. 2021-11

[10]
Towards P-Type Conduction in Hexagonal Boron Nitride: Doping Study and Electrical Measurements Analysis of hBN/AlGaN Heterojunctions.

Nanomaterials (Basel). 2021-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索