Kim Hanul, Uddin Inayat, Watanabe Kenji, Taniguchi Takashi, Whang Dongmok, Kim Gil-Ho
Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Nanomaterials (Basel). 2023 May 22;13(10):1700. doi: 10.3390/nano13101700.
A two-dimensional (2D) atomic crystalline transition metal dichalcogenides has shown immense features, aiming for future nanoelectronic devices comparable to conventional silicon (Si). 2D molybdenum ditelluride (MoTe) has a small bandgap, appears close to that of Si, and is more favorable than other typical 2D semiconductors. In this study, we demonstrate laser-induced p-type doping in a selective region of n-type semiconducting MoTe field effect transistors (FET) with an advance in using the hexagonal boron nitride as passivation layer from protecting the structure phase change from laser doping. A single nanoflake MoTe-based FET, exhibiting initial n-type and converting to p-type in clear four-step doping, changing charge transport behavior in a selective surface region by laser doping. The device shows high electron mobility of about 23.4 cmVs in an intrinsic n-type channel and hole mobility of about 0.61 cmVs with a high on/off ratio. The device was measured in the range of temperature 77-300 K to observe the consistency of the MoTe-based FET in intrinsic and laser-dopped region. In addition, we measured the device as a complementary metal-oxide-semiconductor (CMOS) inverter by switching the charge-carrier polarity of the MoTe FET. This fabrication process of selective laser doping can potentially be used for larger-scale MoTe CMOS circuit applications.
二维(2D)原子晶体过渡金属二硫属化物已展现出巨大的特性,目标是制造出与传统硅(Si)相当的未来纳米电子器件。二维碲化钼(MoTe₂)具有小带隙,接近硅的带隙,并且比其他典型的二维半导体更具优势。在本研究中,我们展示了在n型半导体碲化钼场效应晶体管(FET)的选择性区域中通过激光诱导实现p型掺杂,这一过程中使用六方氮化硼作为钝化层,不仅保护了结构免受激光掺杂导致的相变影响,还取得了进展。基于单个纳米片的MoTe₂ FET,最初表现为n型,在清晰的四步掺杂过程中转变为p型,通过激光掺杂改变了选择性表面区域的电荷传输行为。该器件在本征n型沟道中显示出约23.4 cm²V⁻¹s⁻¹的高电子迁移率,在p型时具有约0.61 cm²V⁻¹s⁻¹的空穴迁移率以及高开关比。在77 - 300 K的温度范围内对该器件进行测量,以观察基于MoTe₂的FET在本征区域和激光掺杂区域的一致性。此外,我们通过切换MoTe₂ FET的电荷载流子极性,将该器件测量为互补金属氧化物半导体(CMOS)反相器。这种选择性激光掺杂的制造工艺有可能用于更大规模的MoTe₂ CMOS电路应用。