文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

含有功能化氧化石墨烯和二氧化硅纳米纤维填料的苯乙烯基弹性体复合材料:力学性能和热导率性能

Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers: Mechanical and Thermal Conductivity Properties.

作者信息

Park Jaehyeung, Sharma Jaswinder, Monaghan Kyle W, Meyer Harry M, Cullen David A, Rossy Andres M, Keum Jong K, Wood David L, Polizos Georgios

机构信息

Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Department of Bio-Fibers and Materials Science, Kyungpook National University, Daegu 41566, Korea.

出版信息

Nanomaterials (Basel). 2020 Aug 27;10(9):1682. doi: 10.3390/nano10091682.


DOI:10.3390/nano10091682
PMID:32867130
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7559061/
Abstract

The mechanical and thermal conductivity properties of two composite elastomers were studied. Styrene-butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica nanofibers, and styrene-butadiene-styrene (SBS) block copolymers filled with graphene oxide. For the SBR composites, GO fillers with two different surface functionalities were synthesized (cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol-gel precursor solution. The surface chemistry of the functionalized fillers was studied in detail. The properties of the composites and the synergistic improvements between the GO and SnFs are presented. For the SBS composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using liquid mixing. Characterization of the filler material and the composite elastomers was performed using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, nanoindentation, thermal conductivity and abrasion testing.

摘要

研究了两种复合弹性体的机械性能和热导率性能。一种是填充有功能化氧化石墨烯(GO)和二氧化硅纳米纤维的丁苯橡胶(SBR),另一种是填充有氧化石墨烯的苯乙烯-丁二烯-苯乙烯(SBS)嵌段共聚物。对于SBR复合材料,合成了具有两种不同表面功能的GO填料(半胱胺和十二烷基胺),并使用机械混合和液体混合技术将其分散在SBR中。基于亲水性半胱胺的GO填料通过机械混合分散在SBR中,而基于疏水性十二烷基胺的GO填料通过液体混合分散在SBR中。通过静电纺丝溶胶-凝胶前驱体溶液制备了二氧化硅纳米纤维(SnFs)。详细研究了功能化填料的表面化学。介绍了复合材料的性能以及GO和SnFs之间的协同改进。对于SBS复合材料,使用液体混合将GO填料以几种重量百分比的负载量分散在SBS弹性体中。使用X射线光电子能谱、X射线衍射、透射电子显微镜、扫描电子显微镜、热重分析、动态力学分析、拉伸试验、纳米压痕、热导率和磨损试验对填料材料和复合弹性体进行了表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/22391447db72/nanomaterials-10-01682-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/610dedcae855/nanomaterials-10-01682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/aa4b69f4f690/nanomaterials-10-01682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/1cc01bd430a6/nanomaterials-10-01682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/6f3b9d94912f/nanomaterials-10-01682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/729f6b788b13/nanomaterials-10-01682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/4cfac25c2510/nanomaterials-10-01682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/e80c7c809cf5/nanomaterials-10-01682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/ba916c1acca1/nanomaterials-10-01682-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/6a94baf1be12/nanomaterials-10-01682-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/982da5880847/nanomaterials-10-01682-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/7ef825f957fc/nanomaterials-10-01682-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/22391447db72/nanomaterials-10-01682-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/610dedcae855/nanomaterials-10-01682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/aa4b69f4f690/nanomaterials-10-01682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/1cc01bd430a6/nanomaterials-10-01682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/6f3b9d94912f/nanomaterials-10-01682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/729f6b788b13/nanomaterials-10-01682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/4cfac25c2510/nanomaterials-10-01682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/e80c7c809cf5/nanomaterials-10-01682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/ba916c1acca1/nanomaterials-10-01682-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/6a94baf1be12/nanomaterials-10-01682-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/982da5880847/nanomaterials-10-01682-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/7ef825f957fc/nanomaterials-10-01682-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7559061/22391447db72/nanomaterials-10-01682-g012.jpg

相似文献

[1]
Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers: Mechanical and Thermal Conductivity Properties.

Nanomaterials (Basel). 2020-8-27

[2]
Preparation and characterization of lignin/nano graphene oxide/styrene butadiene rubber composite for automobile tyre application.

Int J Biol Macromol. 2022-5-1

[3]
Preparation of Styrene-Butadiene Rubber (SBR) Composite Incorporated with Collagen-Functionalized Graphene Oxide for Green Tire Application.

Gels. 2022-3-4

[4]
Preparation and Properties of SBR Composites Containing Graphene Nanoplatelets Modified with Pyridinium Derivative.

Materials (Basel). 2020-11-27

[5]
High performance graphene oxide based rubber composites.

Sci Rep. 2013

[6]
Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites.

Nanomaterials (Basel). 2023-12-21

[7]
Hybrid Silica-Based Fillers in Nanocomposites: Influence of Isotropic/Isotropic and Isotropic/Anisotropic Fillers on Mechanical Properties of Styrene-Butadiene (SBR)-Based Rubber.

Polymers (Basel). 2021-7-22

[8]
Effect of Fillers Modification with ILs on Fillers Textural Properties: Thermal Properties of SBR Composites.

Int J Mol Sci. 2024-1-10

[9]
Effects of octamethylcyclotetrasiloxane grafting and silica particle generation on the curing and mechanical properties of a styrene butadiene rubber composite.

RSC Adv. 2019-10-25

[10]
Influence of Silica Specific Surface Area on the Viscoelastic and Fatigue Behaviors of Silica-Filled SBR Composites.

Polymers (Basel). 2021-9-14

引用本文的文献

[1]
Stretchable Sensors: Novel Human Motion Monitoring Wearables.

Nanomaterials (Basel). 2023-8-19

[2]
Nanocomposites: Nanoscience and Nanotechnology (Nanoscale Phenomena) in Advanced Composites.

Nanomaterials (Basel). 2021-12-29

[3]
Enhanced Tribological Properties of Vulcanized Natural Rubber Composites by Applications of Carbon Nanotube: A Molecular Dynamics Study.

Nanomaterials (Basel). 2021-9-21

[4]
Effect of π-π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene--isoprene--styrene) Composites.

Nanomaterials (Basel). 2021-8-24

本文引用的文献

[1]
Hybrid hollow silica particles: synthesis and comparison of properties with pristine particles.

RSC Adv. 2020-6-10

[2]
Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications.

ACS Appl Mater Interfaces. 2019-11-27

[3]
Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury.

ACS Appl Mater Interfaces. 2019-1-31

[4]
Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.

Chem Rev. 2018-9-26

[5]
Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide.

Sci Rep. 2018-5-1

[6]
An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries.

Adv Mater. 2016-9-22

[7]
Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications.

Sci Rep. 2016-2-25

[8]
Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors.

Sensors (Basel). 2016-1-15

[9]
Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.

ACS Appl Mater Interfaces. 2015-10-28

[10]
Molecular pillar supported graphene oxide framework: conformational heterogeneity and tunable d-spacing.

Phys Chem Chem Phys. 2015-8-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索