Sabbah Hussein, Abdel Baki Zaher, Mezher Rabih, Arayro Jack
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
Nanomaterials (Basel). 2023 Dec 23;14(1):48. doi: 10.3390/nano14010048.
In this investigation, we employ a numerical simulation approach to model a hydrogenated lead-free Cs2AgBiBr6 double perovskite solar cell with a p-i-n inverted structure, utilizing SCAPS-1D. Contrary to traditional lead-based perovskite solar cells, the Cs2AgBiBr6 double perovskite exhibits reduced toxicity and enhanced stability, boasting a maximum power conversion efficiency of 6.37%. Given its potential for improved environmental compatibility, achieving higher efficiency is imperative for its practical implementation in solar cells. This paper offers a comprehensive quantitative analysis of the hydrogenated lead-free Cs2AgBiBr6 double perovskite solar cell, aiming to optimize its structural parameters. Our exploration involves an in-depth investigation of various electron transport layer materials to augment efficiency. Variables that affect the photovoltaic efficiency of the perovskite solar cell are closely examined, including the absorber layer's thickness and doping concentration, the hole transport layer, and the absorber defect density. We also investigate the impact of the doping concentration of the electron transport layer and the energy level alignment between the absorber and the interface on the photovoltaic output of the cell. After careful consideration, zinc oxide is chosen to serve as the electron transport layer. This optimized configuration surpasses the original structure by over four times, resulting in an impressive power conversion efficiency of 26.3%, an open-circuit voltage of 1.278 V, a fill factor of 88.21%, and a short-circuit current density of 23.30 mA.cm-2. This study highlights the critical role that numerical simulations play in improving the chances of commercializing CsAgBiBr double perovskite solar cells through increased structural optimization and efficiency.
在本研究中,我们采用数值模拟方法,利用SCAPS-1D对具有p-i-n倒置结构的氢化无铅Cs2AgBiBr6双钙钛矿太阳能电池进行建模。与传统的铅基钙钛矿太阳能电池不同,Cs2AgBiBr6双钙钛矿具有更低的毒性和更高的稳定性,最大功率转换效率为6.37%。鉴于其在改善环境兼容性方面的潜力,提高效率对于其在太阳能电池中的实际应用至关重要。本文对氢化无铅Cs2AgBiBr6双钙钛矿太阳能电池进行了全面的定量分析,旨在优化其结构参数。我们的探索包括深入研究各种电子传输层材料以提高效率。仔细研究了影响钙钛矿太阳能电池光伏效率的变量,包括吸收层的厚度和掺杂浓度、空穴传输层以及吸收体缺陷密度。我们还研究了电子传输层的掺杂浓度以及吸收体与界面之间的能级对准对电池光伏输出的影响。经过仔细考虑,选择氧化锌作为电子传输层。这种优化配置比原始结构提高了四倍多,功率转换效率达到了令人印象深刻的26.3%,开路电压为1.278 V,填充因子为88.21%,短路电流密度为23.30 mA.cm-2。这项研究突出了数值模拟在通过加强结构优化和提高效率来增加CsAgBiBr双钙钛矿太阳能电池商业化机会方面所起的关键作用。