Suppr超能文献

基于器件模拟的CHNHPbI/CsPbI双层太阳能电池设计

Design of a CHNHPbI/CsPbI-based bilayer solar cell using device simulation.

作者信息

Khatoon Sidra, Yadav Satish Kumar, Singh Jyotsna, Singh Rajendra Bahadur

机构信息

Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.

Centre of Excellence in Renewable Energy Education and Research, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226021, India.

出版信息

Heliyon. 2022 Jul 14;8(7):e09941. doi: 10.1016/j.heliyon.2022.e09941. eCollection 2022 Jul.

Abstract

With lead-based light harvesters, perovskite solar cells (PSCs) have an efficiency of approximately 25.5%, making them a viable photovoltaic technology. The selection of the absorber materials for PSC in this work are (i) Cesium lead iodide (CsPbI) with a 1.73eV bandgap as the first absorber layer, this halide imparts higher stability to perovskite solar cells (ii) CHNHPbI (MAPbI) with a bandgap of 1.55eV is selected as the second absorber layer as this material provides better efficiency to the perovskite solar cells. SCAPS-1D simulation software is used to perform an efficiency analysis of perovskite-perovskite CsPbI/MAPbI bilayer solar cell. For efficiency optimization of the perovskite-perovskite bilayer solar cell, we have tried to calibrate seven parameters of the cell. These parameters are (i & ii) selection of the electron and hole transport material (iii, iv & v) variation in the: defect density of bulk material, doping concentration and the thickness of absorber layers, (vi) variation in work function of front electrode (vii) varying interface defect density. After optimization, the efficiency (η) of bilayer PSC is estimated to be 33.54%. The other PV parameters observed in optimal efficiency condition are open-circuit voltage (V) = 1.34V, short-circuit current density (J) = 27.45 mA/cm and fill factor (FF) = 90.49%. The CsPbI/MAPbI bilayer perovskite solar cell efficiency is roughly double the efficiency of single junction CsPbI or MAPbI PSC. Our analysis observed that the variation in the doping and defect density of narrow bandgap material profoundly impacts the efficiency of perovskite-perovskite bilayer solar cells compared to the wide bandgap material.

摘要

使用基于铅的光捕获器时,钙钛矿太阳能电池(PSC)的效率约为25.5%,使其成为一种可行的光伏技术。本工作中用于PSC的吸收材料选择如下:(i)带隙为1.73eV的碘化铯铅(CsPbI)作为第一吸收层,这种卤化物赋予钙钛矿太阳能电池更高的稳定性;(ii)带隙为1.55eV的甲脒碘化铅(CHNHPbI,MAPbI)被选作第二吸收层,因为这种材料能为钙钛矿太阳能电池提供更高的效率。使用SCAPS - 1D模拟软件对钙钛矿 - 钙钛矿CsPbI/MAPbI双层太阳能电池进行效率分析。为了优化钙钛矿 - 钙钛矿双层太阳能电池的效率,我们尝试校准电池的七个参数。这些参数包括:(i和ii)电子和空穴传输材料的选择;(iii、iv和v)体材料缺陷密度、掺杂浓度和吸收层厚度的变化;(vi)前电极功函数的变化;(vii)界面缺陷密度的变化。优化后,双层PSC的效率(η)估计为33.54%。在最佳效率条件下观察到的其他光伏参数为:开路电压(V) = 1.34V,短路电流密度(J) = 27.45 mA/cm²,填充因子(FF) = 90.49%。CsPbI/MAPbI双层钙钛矿太阳能电池的效率大约是单结CsPbI或MAPbI PSC效率的两倍。我们的分析发现,与宽带隙材料相比,窄带隙材料的掺杂和缺陷密度变化对钙钛矿 - 钙钛矿双层太阳能电池的效率有深远影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae94/9304742/fab077f8fd54/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验