Abboudi Hassan, El Ghazi Haddou, En-Nadir Redouane, Basyooni-M Kabatas Mohamed A, Jorio Anouar, Zorkani Izeddine
LPS, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, Morocco.
2SMPI Group, ENSAM Laboratory, Hassan II University, Nile 150, Casablanca 20670, Morocco.
Nanomaterials (Basel). 2024 Jan 1;14(1):104. doi: 10.3390/nano14010104.
This paper presents a thorough numerical investigation focused on optimizing the efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) based on III-nitride materials. The optimization strategy encompasses manipulating confinement potential energy, controlling hydrostatic pressure, adjusting compositions, and varying thickness. The built-in electric fields in (In, Ga)N alloys and heavy-hole levels are considered to enhance the results' accuracy. The finite element method (FEM) and Python 3.8 are employed to numerically solve the Schrödinger equation within the effective mass theory framework. This study reveals that meticulous design can achieve a theoretical photovoltaic efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) that surpasses the Shockley-Queisser limit. Moreover, reducing the thickness of the layers enhances the light-absorbing capacity and, therefore, contributes to efficiency improvement. Additionally, the shape of the confinement potential significantly influences the device's performance. This work is critical for society, as it represents a significant advancement in sustainable energy solutions, holding the promise of enhancing both the efficiency and accessibility of solar power generation. Consequently, this research stands at the forefront of innovation, offering a tangible and impactful contribution toward a greener and more sustainable energy future.
本文提出了一项全面的数值研究,重点是优化基于III族氮化物材料的量子阱中间带太阳能电池(QW-IBSCs)的效率。优化策略包括操纵限制势能、控制静水压力、调整成分和改变厚度。考虑(In,Ga)N合金中的内建电场和重空穴能级以提高结果的准确性。采用有限元方法(FEM)和Python 3.8在有效质量理论框架内对薛定谔方程进行数值求解。本研究表明,精心设计可使量子阱中间带太阳能电池(QW-IBSCs)的理论光伏效率超过肖克利-奎塞尔极限。此外,减小层的厚度可提高光吸收能力,从而有助于提高效率。此外,限制势的形状对器件性能有显著影响。这项工作对社会至关重要,因为它代表了可持续能源解决方案的重大进步,有望提高太阳能发电的效率和可及性。因此,这项研究处于创新前沿,为更绿色、更可持续的能源未来做出了切实而有影响力的贡献。