Piątkowski Dominik, Puślecki Tobiasz, Walkowiak Krzysztof
Faculty of Information and Communication Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
Sensors (Basel). 2023 Dec 30;24(1):224. doi: 10.3390/s24010224.
As the number of Internet of Things (IoT) devices continues to rise dramatically each day, the data generated and transmitted by them follow similar trends. Given that a significant portion of these embedded devices operate on battery power, energy conservation becomes a crucial factor in their design. This paper aims to investigate the impact of data compression on the energy consumption required for data transmission. To achieve this goal, we conduct a comprehensive study using various transmission modules in a severely resource-limited microcontroller-based system designed for battery power. Our study evaluates the performance of several compression algorithms, conducting a detailed analysis of computational and memory complexity, along with performance metrics. The primary finding of our study is that by carefully selecting an algorithm for compressing different types of data before transmission, a significant amount of energy can be saved. Moreover, our investigation demonstrates that for a battery-powered embedded device transmitting sensor data based on the STM32F411CE microcontroller, the recommended transmission module is the nRF24L01+ board, as it requires the least amount of energy to transmit one byte of data. This module is most effective when combined with the LZ78 algorithm for optimal energy and time efficiency. In the case of image data, our findings indicate that the use of the JPEG algorithm for compression yields the best results. Overall, our research underscores the importance of selecting appropriate compression algorithms tailored to specific data types, contributing to enhanced energy efficiency in IoT devices.
随着物联网(IoT)设备的数量每天都在急剧增加,由它们生成和传输的数据也呈现出类似的增长趋势。鉴于这些嵌入式设备中有很大一部分依靠电池供电运行,节能成为其设计中的一个关键因素。本文旨在研究数据压缩对数据传输所需能耗的影响。为实现这一目标,我们在一个专为电池供电设计的、资源严重受限的基于微控制器的系统中,使用各种传输模块进行了全面研究。我们的研究评估了几种压缩算法的性能,对计算和内存复杂度以及性能指标进行了详细分析。我们研究的主要发现是,在传输前仔细选择用于压缩不同类型数据的算法,可以节省大量能源。此外,我们的调查表明对于一个基于STM32F411CE微控制器传输传感器数据的电池供电嵌入式设备,推荐的传输模块是nRF24L01 +板,因为它传输一个字节的数据所需能量最少。当与LZ78算法结合使用时,该模块在能源和时间效率方面最为有效。对于图像数据,我们的研究结果表明使用JPEG算法进行压缩能产生最佳效果。总体而言,我们的研究强调了选择适合特定数据类型的适当压缩算法的重要性,这有助于提高物联网设备的能源效率。