鸟类隐花色素4能结合超氧化物。
Avian cryptochrome 4 binds superoxide.
作者信息
Deviers Jean, Cailliez Fabien, de la Lande Aurélien, Kattnig Daniel R
机构信息
Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom.
Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France.
出版信息
Comput Struct Biotechnol J. 2023 Dec 18;26:11-21. doi: 10.1016/j.csbj.2023.12.009. eCollection 2024 Dec.
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O) is generated in the re-oxidation with molecular oxygen. The resulting O-containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
黄素结合隐花色素是对蓝光敏感的光感受器,在某些物种中与磁感受有关。光循环涉及黄素辅因子在蛋白质内部的光还原,产生一个磁敏自由基对,随后再氧化。在与分子氧的再氧化过程中会产生超氧化物(O)。由此产生的含O自由基对也被假设为各种磁敏特性的基础,但由于在溶液中翻滚时自旋弛豫速度很快,因此需要固定化。我们在此基于广泛的全原子分子动力学研究和密度泛函理论计算,描述了我们对超氧化物与来自[具体来源未给出]的隐花色素4结合的见解。带正电荷的“隐”区域通向黄素结合口袋,在以精氨酸残基为中心的5个灵活结合位点处短暂结合O。典型的结合时间为几十纳秒,但特殊的结合事件可延长至数百纳秒,并减缓旋转扩散,从而实现高达1纳秒的旋转相关时间。这些结合位点在清除从黄素辅因子附近假定的产生位点逸出的超氧化物方面特别有效,这可能暗示了其功能相关性。我们鉴于生物黄素半醌/超氧化物自由基对的潜在磁敏感性讨论了我们的发现。
相似文献
Comput Struct Biotechnol J. 2023-12-18
Phys Chem Chem Phys. 2019-4-24
J Chem Inf Model. 2023-11-13
Phys Chem Chem Phys. 2016-5-14
J R Soc Interface. 2016-5
Phys Chem Chem Phys. 2015-7-28
J Chem Phys. 2019-12-14
引用本文的文献
本文引用的文献
J Chem Inf Model. 2023-11-13
PLoS Comput Biol. 2022-9
J Chem Inf Model. 2022-9-12
J R Soc Interface. 2022-8
Phys Chem Chem Phys. 2022-7-13
J Phys Chem B. 2021-9-2