Suppr超能文献

理解 FAD 辅因子在 ClCry4 蛋白吸收光谱中的红移。

Understanding the Red Shift in the Absorption Spectrum of the FAD Cofactor in ClCry4 Protein.

机构信息

Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany.

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark.

出版信息

J Phys Chem B. 2024 Jun 6;128(22):5320-5326. doi: 10.1021/acs.jpcb.4c00710. Epub 2024 May 28.

Abstract

It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.

摘要

候鸟如何利用地球磁场进行两年一次的迁徙,这仍然是一个尚未完全解决的谜。迄今为止,最一致的解释是基于外部磁场对隐花色素 4(Cry4)蛋白生物功能的调制。这种现象与黄素腺嘌呤二核苷酸(FAD)辅因子密切相关,该辅因子非共价结合在蛋白质中。Cry4 被蓝光激活,蓝光被 FAD 辅因子吸收。随后的电子和质子转移在蛋白质中引发自由基对的形成,而蛋白质对外部磁场敏感。FAD 辅因子的一个重要的持久氧化还原状态是信号(FADH)状态,该状态在瞬态电子转移步骤完成后存在。最近的实验努力成功地从 (ClCry4)中结晶出 Cry4 蛋白,其中包含蛋白质光还原所需的所有重要残基。到目前为止,这种 Cry4 蛋白的特定结晶是唯一可用的鸟类隐花色素晶体结构,但它与夜间迁徙鸟类的 Cry4 蛋白具有很大的相似性。之前对 ClCry4 蛋白的实验研究包括其不同氧化还原状态下的吸收特性。与其他物种的其他 Cry 蛋白中 FADH 状态下的 FAD 辅因子的光吸收特性相比,FADH 状态下的 FADH 状态的吸收光谱显示出特殊的红移。本研究的目的是通过使用计算显微镜的工具,特别是依赖于极化嵌入近似的 QM/MM 方法,来理解这种红移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d8/11163422/eff460e84cc9/jp4c00710_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验