Salerno K Michael, Domenico Janna, Le Nam Q, Balakrishnan Krithika, McQuillen Ryan J, Stiles Christopher D, Solov'yov Ilia A, Martino Carlos F
Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States.
Institute of Physics, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany.
J Chem Inf Model. 2023 Nov 13;63(21):6756-6767. doi: 10.1021/acs.jcim.3c00325. Epub 2023 Oct 24.
Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O is an exemplary ROS that may be formed through electron transfer from FAD to O, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of cryptochrome 1 (CRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.
隐花色素是一类在物种间高度保守的蛋白质,在许多情况下,它们在其光解酶同源区域(PHR)结构域内结合黄素腺嘌呤二核苷酸(FAD)辅因子。FAD辅因子具有多种氧化还原状态,有助于催化反应,并在约450nm处吸收光子,这一特性与隐花色素蛋白的光相关功能有关。活性氧(ROS)由涉及分子氧的氧化还原反应产生,并参与众多生物过程。超氧阴离子O₂⁻是一种典型的ROS,它可能通过电子从FAD转移到O₂形成,产生一个电子自由基对。尽管有人推测形成了超氧阴离子 - FAD自由基对,但仍不清楚在隐花色素中是否能实现所需的过程步骤。在这里,我们展示了氧与隐花色素1(CRY1)的PHR结构域相互作用的分子动力学(MD)模拟结果。利用MD模拟轨迹,通过O₂ - FAD分子间距离和局部蛋白质环境来表征氧的结合位置。通过对结合氧的副本模拟来表征氧的解离时间。模拟结果表明,氧分子可以在隐花色素蛋白内的某些位点定位数十纳秒,而超氧阴离子分子的定位时间则长得多。这种相对较长时间的分子结合表明可能发生导致超氧阴离子形成的电子转移反应。利用马库斯理论对确定的潜在结合位点进行了电子转移速率估计。将分子氧结合结果与最近关于另一种FAD结合蛋白电子转移黄素蛋白(ETF)内长时间氧结合的结果进行了比较。