Suppr超能文献

光激活隐花色素与分子氧反应形成黄素-超氧自由基对,与磁受体一致。

Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.

机构信息

Université Paris VI, 4 Place Jussieu, 75005 Paris, France.

出版信息

J Biol Chem. 2011 Jun 17;286(24):21033-40. doi: 10.1074/jbc.M111.228940. Epub 2011 Apr 5.

Abstract

Cryptochromes are flavin-based photoreceptors occurring throughout the biological kingdom, which regulate growth and development in plants and are involved in the entrainment of circadian rhythms of both plants and animals. A number of recent theoretical works suggest that cryptochromes might also be the receptors responsible for the sensing of the magnetic field of the earth (e.g. in insects, migratory birds, or migratory fish). Cryptochromes undergo forward light-induced reactions involving electron transfer to excited state flavin to generate radical intermediates, which correlate with biological activity. Here, we give evidence of a mechanism for the reverse reaction, namely dark reoxidation of protein-bound flavin in Arabidopsis thaliana cryptochrome (AtCRY1) by molecular oxygen that involves formation of a spin-correlated FADH(•)-superoxide radical pair. Formation of analogous radical pairs in animal cryptochromes might enable them to function as magnetoreceptors.

摘要

隐花色素是一种存在于整个生物界的黄素基光受体,它调节植物的生长和发育,并参与植物和动物昼夜节律的同步。一些最近的理论工作表明,隐花色素也可能是负责感知地球磁场的受体(例如,在昆虫、候鸟或洄游鱼类中)。隐花色素经历正向光诱导反应,涉及电子转移到激发态黄素以产生自由基中间体,这与生物活性相关。在这里,我们给出了一种机制的证据,即拟南芥隐花色素(AtCRY1)中由分子氧介导的蛋白结合黄素的暗再氧化反应,该反应涉及形成自旋相关的 FADH(•)-超氧自由基对。在动物隐花色素中形成类似的自由基对可能使它们能够作为磁受体发挥作用。

相似文献

1
Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
J Biol Chem. 2011 Jun 17;286(24):21033-40. doi: 10.1074/jbc.M111.228940. Epub 2011 Apr 5.
3
Magnetoreception through cryptochrome may involve superoxide.
Biophys J. 2009 Jun 17;96(12):4804-13. doi: 10.1016/j.bpj.2009.03.048.
4
Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
Photochem Photobiol Sci. 2020 Mar 1;19(3):341-352. doi: 10.1039/c9pp00469f. Epub 2020 Feb 17.
5
Long-Time Oxygen and Superoxide Localization in Cryptochrome.
J Chem Inf Model. 2023 Nov 13;63(21):6756-6767. doi: 10.1021/acs.jcim.3c00325. Epub 2023 Oct 24.
6
Viability of superoxide-containing radical pairs as magnetoreceptors.
J Chem Phys. 2019 Dec 14;151(22):225101. doi: 10.1063/1.5129608.
7
Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins.
Phys Chem Chem Phys. 2015 Jul 28;17(28):18456-63. doi: 10.1039/c5cp00723b.
9
Theoretical insights into the formation and stability of radical oxygen species in cryptochromes.
Phys Chem Chem Phys. 2019 Apr 24;21(17):8874-8882. doi: 10.1039/c9cp00782b.
10
Electron spin relaxation in cryptochrome-based magnetoreception.
Phys Chem Chem Phys. 2016 May 14;18(18):12443-56. doi: 10.1039/c5cp06731f. Epub 2016 Mar 29.

引用本文的文献

1
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism.
Chem Rev. 2025 Sep 10;125(17):8051-8088. doi: 10.1021/acs.chemrev.5c00178. Epub 2025 Jul 14.
2
Spectroscopic Characterization of Radical Pair Photochemistry in Nonmigratory Avian Cryptochromes: Magnetic Field Effects in Cry4a.
J Am Chem Soc. 2025 Jul 16;147(28):24286-24298. doi: 10.1021/jacs.4c14037. Epub 2025 Jun 30.
4
The role of blue light in plant stress responses: modulation through photoreceptors and antioxidant mechanisms.
Front Plant Sci. 2025 May 16;16:1554281. doi: 10.3389/fpls.2025.1554281. eCollection 2025.
5
Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics.
Comput Struct Biotechnol J. 2024 Nov 10;26:58-69. doi: 10.1016/j.csbj.2024.11.001. eCollection 2024 Dec.
6
7
A structural decryption of cryptochromes.
Front Chem. 2024 Aug 16;12:1436322. doi: 10.3389/fchem.2024.1436322. eCollection 2024.
8
Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on .
Front Plant Sci. 2024 May 28;15:1390031. doi: 10.3389/fpls.2024.1390031. eCollection 2024.
9
Structural Rearrangements of Pigeon Cryptochrome 4 Undergoing a Complete Redox Cycle.
J Phys Chem B. 2024 Apr 25;128(16):3844-3855. doi: 10.1021/acs.jpcb.4c00424. Epub 2024 Apr 3.
10
'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle.
Front Plant Sci. 2024 Mar 1;15:1340304. doi: 10.3389/fpls.2024.1340304. eCollection 2024.

本文引用的文献

1
The cryptochromes: blue light photoreceptors in plants and animals.
Annu Rev Plant Biol. 2011;62:335-64. doi: 10.1146/annurev-arplant-042110-103759.
2
Searching for a photocycle of the cryptochrome photoreceptors.
Curr Opin Plant Biol. 2010 Oct;13(5):578-86. doi: 10.1016/j.pbi.2010.09.005. Epub 2010 Oct 11.
3
Reaction mechanisms of DNA photolyase.
Curr Opin Struct Biol. 2010 Dec;20(6):693-701. doi: 10.1016/j.sbi.2010.07.003. Epub 2010 Aug 10.
5
Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
Nature. 2010 Feb 11;463(7282):804-7. doi: 10.1038/nature08719. Epub 2010 Jan 24.
7
Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
J Am Chem Soc. 2009 Oct 14;131(40):14274-80. doi: 10.1021/ja901628y.
8
Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
Biophys J. 2009 Apr 22;96(8):3451-7. doi: 10.1016/j.bpj.2008.11.072.
9
Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
PLoS Biol. 2009 Apr 7;7(4):e1000086. doi: 10.1371/journal.pbio.1000086.
10
Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.
FEBS Lett. 2009 May 6;583(9):1427-33. doi: 10.1016/j.febslet.2009.03.040. Epub 2009 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验