Suppr超能文献

鼻腔鼻窦内翻性乳头状瘤恶变的术前预测:一种基于MRI的新型深度学习方法。

Preoperative prediction of malignant transformation in sinonasal inverted papilloma: a novel MRI-based deep learning approach.

作者信息

Ding Cong, Wen Baohong, Han Qinghe, Hu Na, Kang Yue, Wang Yuchen, Wang Chengshuo, Zhang Luo, Xian Junfang

机构信息

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Henan, China.

出版信息

Eur Radiol. 2025 May 12. doi: 10.1007/s00330-025-11655-5.

Abstract

OBJECTIVE

To develop a novel MRI-based deep learning (DL) diagnostic model, utilizing multicenter large-sample data, for the preoperative differentiation of sinonasal inverted papilloma (SIP) from SIP-transformed squamous cell carcinoma (SIP-SCC).

METHODS

This study included 568 patients from four centers with confirmed SIP (n = 421) and SIP-SCC (n = 147). Deep learning models were built using T1WI, T2WI, and CE-T1WI. A combined model was constructed by integrating these features through an attention mechanism. The diagnostic performance of radiologists, both with and without the model's assistance, was compared. Model performance was evaluated through receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA).

RESULTS

The combined model demonstrated superior performance in differentiating SIP from SIP-SCC, achieving AUCs of 0.954, 0.897, and 0.859 in the training, internal validation, and external validation cohorts, respectively. It showed optimal accuracy, stability, and clinical benefit, as confirmed by Brier scores and calibration curves. The diagnostic performance of radiologists, especially for less experienced ones, was significantly improved with model assistance.

CONCLUSIONS

The MRI-based deep learning model enhances the capability to predict malignant transformation of sinonasal inverted papilloma before surgery. By facilitating earlier diagnosis and promoting timely pathological examination or surgical intervention, this approach holds the potential to enhance patient prognosis.

KEY POINTS

Questions Sinonasal inverted papilloma (SIP) is prone to malignant transformation locally, leading to poor prognosis; current diagnostic methods are invasive and inaccurate, necessitating effective preoperative differentiation. Findings The MRI-based deep learning model accurately diagnoses malignant transformations of SIP, enabling junior radiologists to achieve greater clinical benefits with the assistance of the model. Clinical relevance A novel MRI-based deep learning model enhances the capability of preoperative diagnosis of malignant transformation in sinonasal inverted papilloma, providing a non-invasive tool for personalized treatment planning.

摘要

目的

利用多中心大样本数据,开发一种基于磁共振成像(MRI)的深度学习(DL)诊断模型,用于术前鉴别鼻窦内翻性乳头状瘤(SIP)与SIP转化的鳞状细胞癌(SIP-SCC)。

方法

本研究纳入了来自四个中心的568例患者,其中确诊为SIP的有421例,确诊为SIP-SCC的有147例。使用T1WI、T2WI和增强T1WI构建深度学习模型。通过注意力机制整合这些特征构建了一个联合模型。比较了有和没有模型辅助的放射科医生的诊断性能。通过受试者工作特征(ROC)分析、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

联合模型在区分SIP和SIP-SCC方面表现出卓越的性能,在训练队列、内部验证队列和外部验证队列中的曲线下面积(AUC)分别为0.954、0.897和0.859。Brier评分和校准曲线证实,该模型具有最佳的准确性、稳定性和临床效益。模型辅助显著提高了放射科医生的诊断性能,尤其是经验较少的医生。

结论

基于MRI的深度学习模型增强了术前预测鼻窦内翻性乳头状瘤恶变的能力。通过促进早期诊断并推动及时的病理检查或手术干预,这种方法有可能改善患者的预后。

要点

问题鼻窦内翻性乳头状瘤(SIP)易于局部恶变,导致预后不良;目前的诊断方法具有侵入性且不准确,需要有效的术前鉴别。发现基于MRI的深度学习模型能够准确诊断SIP的恶变,使初级放射科医生在模型辅助下获得更大的临床效益。临床意义一种新的基于MRI的深度学习模型增强了术前诊断鼻窦内翻性乳头状瘤恶变的能力,为个性化治疗规划提供了一种非侵入性工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验