Kaskes Pim, Marchegiano Marta, Peral Marion, Goderis Steven, Claeys Philippe
Research Unit: Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Laboratoire G-Time, Université Libre de Bruxelles, 1050 Brussels, Belgium.
PNAS Nexus. 2024 Jan 11;3(1):pgad414. doi: 10.1093/pnasnexus/pgad414. eCollection 2024 Jan.
Constraining the thermodynamic conditions within an impact structure during and after hypervelocity impacts is extremely challenging due to the transient thermal regimes. This work uses carbonate clumped-isotope thermometry to reconstruct absolute temperatures of impact lithologies within and close to the ∼66 Myr old Chicxulub crater (Yucatán, México). We present stable oxygen (δO), carbon (δC), and clumped-isotope (Δ) data for carbonate-bearing impact breccias, impact melt rock, and target lithologies from four drill cores on a transect through the Chicxulub structure from the northern peak ring to the southern proximal ejecta blanket. Clumped isotope-derived temperatures ((Δ)) are consistently higher than maximum Late Cretaceous sea surface temperatures (35.5°C), except in the case of Paleogene limestones and melt-poor impact breccias outside of the crater, confirming the influence of burial diagenesis and a widespread and long-lived hydrothermal system. The melt-poor breccia unit outside the crater is overlain by melt-rich impact breccia yielding a much higher (Δ) of 111 ± 10°C (1 standard error [SE]), which likely traces the thermal processing of carbonate material during ejection. Finally, (Δ) up to 327 ± 33°C (1 SE) is determined for the lower suevite and impact melt rock intervals within the crater. The highest temperatures are related to distinct petrological features associated with decarbonation and rapid back-reaction, in which highly reactive CaO recombines with impact-released CO to form secondary CaCO phases. These observations have important climatic implications for the Cretaceous-Paleogene mass extinction event, as current numerical models likely overestimate the release of CO from the Chicxulub impact event.
由于瞬态热状态,在超高速撞击期间及之后限制撞击结构内的热力学条件极具挑战性。这项工作利用碳酸盐团簇同位素测温法来重建约6600万年前希克苏鲁伯陨石坑(墨西哥尤卡坦半岛)内部及附近撞击岩性的绝对温度。我们展示了来自四条钻芯的含碳酸盐撞击角砾岩、撞击熔岩和目标岩性的稳定氧(δO)、碳(δC)和团簇同位素(Δ)数据,这些钻芯位于一条穿过希克苏鲁伯结构的剖面上,从北峰环到南近端喷出物覆盖层。除了古近纪石灰岩和陨石坑外贫熔体的撞击角砾岩外,团簇同位素衍生温度((Δ))始终高于晚白垩世最高海面温度(35.5°C),这证实了埋藏成岩作用和广泛且长期存在的热液系统的影响。陨石坑外贫熔体的角砾岩单元被富含熔体的撞击角砾岩覆盖,后者产生了更高的(Δ),为111±10°C(1个标准误差[SE]),这可能追踪了喷发过程中碳酸盐物质的热加工过程。最后,确定陨石坑内下部苏维特岩和撞击熔岩间隔的(Δ)高达327±33°C(1 SE)。最高温度与脱碳和快速逆反应相关的独特岩石学特征有关,其中高活性CaO与撞击释放的CO重新结合形成次生CaCO相。这些观测结果对白垩纪 - 古近纪大灭绝事件具有重要的气候意义,因为当前的数值模型可能高估了希克苏鲁伯撞击事件中CO的释放量。