Suppr超能文献

基于众包的人类计算方法,利用非专业用户对镰状细胞病患者的外周血涂片样本图像进行标记。

Crowdsourced human-based computational approach for tagging peripheral blood smear sample images from Sickle Cell Disease patients using non-expert users.

机构信息

UGiVIA Research Group, Department of Mathematics and Computer Science, University of the Balearic Islands, 07122, Palma, Spain.

Laboratory for Artificial Intelligence Applications (LAIA@UIB), University of the Balearic Islands, 07122, Palma, Spain.

出版信息

Sci Rep. 2024 Jan 12;14(1):1201. doi: 10.1038/s41598-024-51591-w.

Abstract

In this paper, we present a human-based computation approach for the analysis of peripheral blood smear (PBS) images images in patients with Sickle Cell Disease (SCD). We used the Mechanical Turk microtask market to crowdsource the labeling of PBS images. We then use the expert-tagged erythrocytesIDB dataset to assess the accuracy and reliability of our proposal. Our results showed that when a robust consensus is achieved among the Mechanical Turk workers, probability of error is very low, based on comparison with expert analysis. This suggests that our proposed approach can be used to annotate datasets of PBS images, which can then be used to train automated methods for the diagnosis of SCD. In future work, we plan to explore the potential integration of our findings with outcomes obtained through automated methodologies. This could lead to the development of more accurate and reliable methods for the diagnosis of SCD.

摘要

在本文中,我们提出了一种基于人类计算的方法,用于分析镰状细胞病(SCD)患者的外周血涂片(PBS)图像。我们利用 Mechanical Turk 微任务市场来众包 PBS 图像的标注。然后,我们使用 expert-tagged erythrocytesIDB 数据集来评估我们建议的准确性和可靠性。我们的结果表明,当 Mechanical Turk 工人之间达成稳健的共识时,基于与专家分析的比较,错误的概率非常低。这表明我们提出的方法可以用于注释 PBS 图像数据集,然后可以用于训练用于诊断 SCD 的自动化方法。在未来的工作中,我们计划探索将我们的发现与通过自动化方法获得的结果进行潜在整合。这可能会导致开发出更准确、更可靠的 SCD 诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc4/10786843/d7bf9556b1b9/41598_2024_51591_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验