Suppr超能文献

基于神经网络的相变序参量及其在高熵合金中的应用。

Neural network-based order parameter for phase transitions and its applications in high-entropy alloys.

作者信息

Yin Junqi, Pei Zongrui, Gao Michael C

机构信息

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

National Energy Technology Laboratory, Albany, OR, USA.

出版信息

Nat Comput Sci. 2021 Oct;1(10):686-693. doi: 10.1038/s43588-021-00139-3. Epub 2021 Oct 18.

Abstract

Phase transition is one of the most important phenomena in nature and plays a central role in materials design. All phase transitions are characterized by suitable order parameters, including the order-disorder phase transition. However, finding a representative order parameter for complex systems is non-trivial, such as for high-entropy alloys. Given the strength of dimensionality reduction of a variational autoencoder (VAE), we introduce a VAE-based order parameter. We propose that the Manhattan distance in the VAE latent space can serve as a generic order parameter for order-disorder phase transitions. The physical properties of our order parameter are quantitatively interpreted and demonstrated by multiple refractory high-entropy alloys. Using this order parameter, a generally applicable alloy design concept is proposed by mimicking the natural mixing process of elements. Our physically interpretable VAE-based order parameter provides a computational technique for understanding chemical ordering in alloys, which can facilitate the development of rational alloy design strategies.

摘要

相变是自然界中最重要的现象之一,在材料设计中起着核心作用。所有相变都由合适的序参量来表征,包括有序-无序相变。然而,为复杂系统找到一个具有代表性的序参量并非易事,例如对于高熵合金而言。鉴于变分自编码器(VAE)的降维能力,我们引入了一种基于VAE的序参量。我们提出,VAE潜在空间中的曼哈顿距离可作为有序-无序相变的通用序参量。多种难熔高熵合金对我们的序参量的物理性质进行了定量解释和论证。利用这个序参量,通过模拟元素的自然混合过程,提出了一种普遍适用的合金设计概念。我们基于VAE的具有物理可解释性的序参量为理解合金中的化学有序性提供了一种计算技术,这有助于合理合金设计策略的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验