Suppr超能文献

通过挖掘六百万篇文本,旨在设计超高熵合金。

Toward the design of ultrahigh-entropy alloys via mining six million texts.

机构信息

New York University, New York, NY, 10012, USA.

Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

出版信息

Nat Commun. 2023 Jan 4;14(1):54. doi: 10.1038/s41467-022-35766-5.

Abstract

It has long been a norm that researchers extract knowledge from literature to design materials. However, the avalanche of publications makes the norm challenging to follow. Text mining (TM) is efficient in extracting information from corpora. Still, it cannot discover materials not present in the corpora, hindering its broader applications in exploring novel materials, such as high-entropy alloys (HEAs). Here we introduce a concept of "context similarity" for selecting chemical elements for HEAs, based on TM models that analyze the abstracts of 6.4 million papers. The method captures the similarity of chemical elements in the context used by scientists. It overcomes the limitations of TM and identifies the Cantor and Senkov HEAs. We demonstrate its screening capability for six- and seven-component lightweight HEAs by finding nearly 500 promising alloys out of 2.6 million candidates. The method thus brings an approach to the development of ultrahigh-entropy alloys and multicomponent materials.

摘要

长期以来,研究人员一直从文献中提取知识来设计材料。然而,大量的出版物使得这一规范难以遵循。文本挖掘(TM)在从语料库中提取信息方面非常有效。尽管如此,它仍然无法发现语料库中不存在的材料,这限制了它在探索新型材料(如高熵合金(HEAs))方面的更广泛应用。在这里,我们介绍了一种基于 TM 模型的“上下文相似性”概念,用于选择高熵合金的化学元素,该模型分析了 640 万篇论文的摘要。该方法捕捉了科学家使用的化学元素的上下文相似性。它克服了 TM 的局限性,并识别出 Cantor 和 Senkov 高熵合金。我们通过在 260 万个候选合金中找到了近 500 种有前途的合金,展示了其对六元和七元轻合金的筛选能力。因此,该方法为超高熵合金和多组分材料的开发带来了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce6/9813346/f0b7b20ba671/41467_2022_35766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验