Rautela Mahindra, Williams Alan, Scheinker Alexander
Applied Electrodynamics Group (AOT-AE), Los Alamos National Laboratory, Los Alamos, NM, 87547, USA.
Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, 92093, USA.
Sci Rep. 2024 Aug 6;14(1):18157. doi: 10.1038/s41598-024-68944-0.
Particle accelerators are complex systems that focus, guide, and accelerate intense charged particle beams to high energy. Beam diagnostics present a challenging problem due to limited non-destructive measurements, computationally demanding simulations, and inherent uncertainties in the system. We propose a two-step unsupervised deep learning framework named as Conditional Latent Autoregressive Recurrent Model (CLARM) for learning the spatiotemporal dynamics of charged particles in accelerators. CLARM consists of a Conditional Variational Autoencoder transforming six-dimensional phase space into a lower-dimensional latent distribution and a Long Short-Term Memory network capturing temporal dynamics in an autoregressive manner. The CLARM can generate projections at various accelerator modules by sampling and decoding the latent space representation. The model also forecasts future states (downstream locations) of charged particles from past states (upstream locations). The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
粒子加速器是复杂的系统,它能聚焦、引导并将强带电粒子束加速到高能。由于非破坏性测量有限、计算量大的模拟以及系统中固有的不确定性,束流诊断是一个具有挑战性的问题。我们提出了一种名为条件潜在自回归循环模型(CLARM)的两步无监督深度学习框架,用于学习加速器中带电粒子的时空动力学。CLARM由一个将六维相空间转换为低维潜在分布的条件变分自编码器和一个以自回归方式捕捉时间动态的长短期记忆网络组成。CLARM可以通过对潜在空间表示进行采样和解码,在各种加速器模块上生成投影。该模型还能根据带电粒子的过去状态(上游位置)预测其未来状态(下游位置)。结果表明,当根据各种评估指标进行测试时,所提出方法的生成和预测能力很有前景。