Suppr超能文献

面向基于 EEG 分类器最优训练的无主题元学习框架。

Subject-independent meta-learning framework towards optimal training of EEG-based classifiers.

机构信息

Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore; AI Singapore, 3 Research Link, 117602, Singapore.

Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.

出版信息

Neural Netw. 2024 Apr;172:106108. doi: 10.1016/j.neunet.2024.106108. Epub 2024 Jan 6.

Abstract

Advances in deep learning have shown great promise towards the application of performing high-accuracy Electroencephalography (EEG) signal classification in a variety of tasks. However, many EEG-based datasets are often plagued by the issue of high inter-subject signal variability. Robust deep learning models are notoriously difficult to train under such scenarios, often leading to subpar or widely varying performance across subjects under the leave-one-subject-out paradigm. Recently, the model agnostic meta-learning framework was introduced as a way to increase the model's ability to generalize towards new tasks. While the original framework focused on task-based meta-learning, this research aims to show that the meta-learning methodology can be modified towards subject-based signal classification while maintaining the same task objectives and achieve state-of-the-art performance. Namely, we propose the novel implementation of a few/zero-shot subject-independent meta-learning framework towards multi-class inner speech and binary class motor imagery classification. Compared to current subject-adaptive methods which utilize large number of labels from the target, the proposed framework shows its effectiveness in training zero-calibration and few-shot models for subject-independent EEG classification. The proposed few/zero-shot subject-independent meta-learning mechanism performs well on both small and large datasets and achieves robust, generalized performance across subjects. The results obtained shows a significant improvement over the current state-of-the-art, with the binary class motor imagery achieving 88.70% and the accuracy of multi-class inner speech achieving an average of 31.15%. Codes will be made available to public upon publication.

摘要

深度学习的进展表明,在各种任务中执行高精度脑电图 (EEG) 信号分类具有很大的潜力。然而,许多基于 EEG 的数据集通常存在高个体间信号可变性的问题。在这种情况下,鲁棒的深度学习模型很难训练,通常会导致在离开一个主体的情况下,不同主体的性能参差不齐或差异很大。最近,模型不可知元学习框架被引入作为一种提高模型对新任务泛化能力的方法。虽然原始框架侧重于基于任务的元学习,但本研究旨在表明,元学习方法可以针对基于主体的信号分类进行修改,同时保持相同的任务目标,并实现最先进的性能。也就是说,我们提出了一种新颖的实现方法,用于多类内部言语和二类运动想象分类的少数/零样本主体独立元学习框架。与当前利用目标大量标签的主体自适应方法相比,所提出的框架在训练零校准和少数样本主体独立 EEG 分类模型方面表现出了有效性。所提出的少数/零样本主体独立元学习机制在小数据集和大数据集上都表现良好,并在主体间实现了稳健、通用的性能。获得的结果表明,与当前最先进的方法相比,有显著的改进,二进制运动想象类的准确率达到 88.70%,多类内部言语的准确率平均达到 31.15%。代码将在发表后公开发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验