Suppr超能文献

高多重分析评估肿瘤中的生物标志物。

High-Plex Assessment of Biomarkers in Tumors.

机构信息

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut.

出版信息

Mod Pathol. 2024 Mar;37(3):100425. doi: 10.1016/j.modpat.2024.100425. Epub 2024 Jan 12.

Abstract

The assessment of biomarkers plays a critical role in the diagnosis and treatment of many cancers. Biomarkers not only provide diagnostic, prognostic, or predictive information but also can act as effective targets for new pharmaceutical therapies. As the utility of biomarkers increases, it becomes more important to utilize accurate and efficient methods for biomarker discovery and, ultimately, clinical assessment. High-plex imaging studies, defined here as assessment of 8 or more biomarkers on a single slide, have become the method of choice for biomarker discovery and assessment of biomarker spatial context. In this review, we discuss methods of measuring biomarkers in slide-mounted tissue samples, detail the various high-plex methods that allow for the simultaneous assessment of multiple biomarkers in situ, and describe the impact of high-plex biomarker assessment on the future of anatomic pathology.

摘要

生物标志物的评估在许多癌症的诊断和治疗中起着关键作用。生物标志物不仅提供诊断、预后或预测信息,还可以作为新的药物治疗的有效靶点。随着生物标志物的应用越来越广泛,利用准确高效的方法进行生物标志物的发现和最终的临床评估变得尤为重要。高多重成像研究(这里定义为在单个载玻片上评估 8 个或更多的生物标志物)已成为生物标志物发现和评估生物标志物空间背景的首选方法。在这篇综述中,我们讨论了测量载玻片组织样本中生物标志物的方法,详细介绍了允许在原位同时评估多个生物标志物的各种高多重方法,并描述了高多重生物标志物评估对解剖病理学未来的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验