Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
Nat Cancer. 2023 Jul;4(7):1036-1052. doi: 10.1038/s43018-023-00576-1. Epub 2023 Jun 22.
Precision medicine is critically dependent on better methods for diagnosing and staging disease and predicting drug response. Histopathology using hematoxylin and eosin (H&E)-stained tissue (not genomics) remains the primary diagnostic method in cancer. Recently developed highly multiplexed tissue imaging methods promise to enhance research studies and clinical practice with precise, spatially resolved single-cell data. Here, we describe the 'Orion' platform for collecting H&E and high-plex immunofluorescence images from the same cells in a whole-slide format suitable for diagnosis. Using a retrospective cohort of 74 colorectal cancer resections, we show that immunofluorescence and H&E images provide human experts and machine learning algorithms with complementary information that can be used to generate interpretable, multiplexed image-based models predictive of progression-free survival. Combining models of immune infiltration and tumor-intrinsic features achieves a 10- to 20-fold discrimination between rapid and slow (or no) progression, demonstrating the ability of multimodal tissue imaging to generate high-performance biomarkers.
精准医学严重依赖于更好的疾病诊断和分期、药物反应预测方法。苏木精和伊红(H&E)染色组织的组织病理学(非基因组学)仍然是癌症的主要诊断方法。最近开发的高通量组织成像方法有望通过精确的、空间分辨的单细胞数据增强研究和临床实践。在这里,我们描述了“猎户座”平台,用于从整个幻灯片格式的同一样本中收集 H&E 和高多重免疫荧光图像,适用于诊断。通过对 74 例结直肠癌切除术后的回顾性队列研究,我们发现免疫荧光和 H&E 图像为人类专家和机器学习算法提供了互补信息,这些信息可用于生成可解释的、基于多重成像的预测无进展生存期的模型。结合免疫浸润和肿瘤内在特征的模型,在快速和缓慢(或无)进展之间实现了 10 到 20 倍的区分,证明了多模态组织成像生成高性能生物标志物的能力。