Sougrakpam Yaiphabi, Babuta Priyanka, Deswal Renu
Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India.
Physiol Mol Biol Plants. 2023 Dec;29(12):2051-2065. doi: 10.1007/s12298-023-01371-z. Epub 2023 Nov 2.
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss.
The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
低温(冷)胁迫是影响全球作物生产力的主要非生物胁迫条件之一。一氧化氮(NO)是一种动态信号分子,它与各种胁迫调节因子相互作用并提供非生物胁迫耐受性。胁迫增强的NO会导致S-亚硝基硫醇积累,从而导致蛋白质中的-SH基团氧化,进而导致S-亚硝基化,这是一种翻译后修饰。在不同作物中,冷胁迫诱导了主要属于胁迫/信号/氧化还原(黑芥子酶、超氧化物歧化酶、谷胱甘肽S-转移酶、半胱氨酸合成酶、脱氢抗坏血酸还原酶)、光合作用(核酮糖-1,5-二磷酸羧化酶/加氧酶、磷酸核糖激酶)、代谢(果糖-1,6-二磷酸酶、甘油醛-3-磷酸脱氢酶、磷酸丙糖异构酶、景天庚酮糖-1,7-二磷酸酶)和细胞壁修饰(β-木糖苷酶、α-L-阿拉伯半乳聚糖)的240多种蛋白质发生体内S-亚硝基化,这表明NO在这些重要的细胞和代谢途径中发挥作用。在幼苗中显示了NO在转录和翻译后水平对转录因子CBF(C-重复结合因子,一种转录因子)的调节作用。NO供体引发可提高种子发芽率、打破休眠并使作物耐受胁迫。其在避免胁迫、促进种子发芽和延缓衰老方面的作用为使用NO和释放NO的化合物来防止作物损失以及延长水果和蔬菜的货架期铺平了道路。一种替代耗能且昂贵的冷藏方法导致开发出一种名为“货架期增强器”的储存设备,该设备使用NO供体在环境温度(25-27°C)下延缓衰老并延长货架期。本综述总结了植物中NO的研究以及对NO提高农业产量和减少收获后作物损失的转化潜力的探索。
在线版本包含可在10.1007/s12298-023-01371-z获取的补充材料。