University of Michigan, Ann Arbor, MI, USA.
AMIA Annu Symp Proc. 2024 Jan 11;2023:1314-1323. eCollection 2023.
With increased application of natural language processing (NLP) in medicine, many NLP models are being developed for uncovering relevant clinical features from electronic health records. Temporal information plays a key role in understanding the context, significance, and interpretation of medical concepts extracted from clinical notes. This is particularly true in situations where the behavior, value, or status of a medical concept changes over time. In this paper, we introduce a systematic framework, NLP annotation-Relaxation-Generation (NRG). NRG compiles incidents of medical concept changes from status annotations and timestamps of multiple clinical notes. We demonstrate the effectiveness of the NRG pipeline by applying it to two medical concepts related to patients with inflammatory bowel disease: extra-intestinal manifestations and medications. We show that the NRG pipeline offers not only insights into medical concept changes over time, but can help convey longitudinal changes in clinical features at both individual and population level.
随着自然语言处理(NLP)在医学领域的应用日益广泛,许多 NLP 模型被开发出来,用于从电子健康记录中挖掘相关的临床特征。时间信息在理解从临床记录中提取的医学概念的上下文、意义和解释方面起着关键作用。在医疗概念的行为、价值或状态随时间变化的情况下尤其如此。在本文中,我们介绍了一个系统框架,即 NLP 注释-松弛-生成(NRG)。NRG 从多个临床记录的状态注释和时间戳中编译医疗概念变化的事件。我们通过将 NRG 管道应用于与炎症性肠病患者相关的两个医学概念:肠外表现和药物,证明了 NRG 管道的有效性。我们表明,NRG 管道不仅提供了随时间变化的医学概念的深入了解,而且可以帮助在个体和人群层面上传达临床特征的纵向变化。