Department of Health Management and Informatics, School of Medicine, University of Missouri-Columbia.
Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.
AMIA Annu Symp Proc. 2024 Jan 11;2023:718-725. eCollection 2023.
Amyotrophic lateral sclerosis (ALS) is a rare and devastating neurodegenerative disorder that is highly heterogeneous and invariably fatal. Due to the unpredictable nature of its progression, accurate tools and algorithms are needed to predict disease progression and improve patient care. To address this need, we developed and compared an extensive set of screener-learner machine learning models to accurately predict the ALS Function-Rating-Scale (ALSFRS) score reduction between 3 and 12 months, by paring 5 state-of-arts feature selection algorithms with 17 predictive models and 4 ensemble models using the publicly available Pooled Open Access Clinical Trials Database (PRO-ACT). Our experiment showed promising results with the blender-type ensemble model achieving the best prediction accuracy and highest prognostic potential.
肌萎缩侧索硬化症(ALS)是一种罕见且具有破坏性的神经退行性疾病,其高度异质且不可避免地致命。由于其进展的不可预测性质,需要准确的工具和算法来预测疾病进展并改善患者护理。为了满足这一需求,我们开发并比较了一套广泛的筛选器-学习者机器学习模型,通过使用公开可用的汇集开放获取临床试验数据库(PRO-ACT),使用 5 种最先进的特征选择算法与 17 种预测模型和 4 种集成模型,准确预测 3 至 12 个月之间的 ALS 功能评定量表(ALSFRS)评分下降。我们的实验结果表明,搅拌机类型的集成模型具有最佳的预测准确性和最高的预后潜力,具有广阔的应用前景。