Suppr超能文献

面向预测肌萎缩侧索硬化疾病进展的机器学习赋能预后模型。

Towards a Machine Learning Empowered Prognostic Model for Predicting Disease Progression for Amyotrophic Lateral Sclerosis.

机构信息

Department of Health Management and Informatics, School of Medicine, University of Missouri-Columbia.

Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:718-725. eCollection 2023.

Abstract

Amyotrophic lateral sclerosis (ALS) is a rare and devastating neurodegenerative disorder that is highly heterogeneous and invariably fatal. Due to the unpredictable nature of its progression, accurate tools and algorithms are needed to predict disease progression and improve patient care. To address this need, we developed and compared an extensive set of screener-learner machine learning models to accurately predict the ALS Function-Rating-Scale (ALSFRS) score reduction between 3 and 12 months, by paring 5 state-of-arts feature selection algorithms with 17 predictive models and 4 ensemble models using the publicly available Pooled Open Access Clinical Trials Database (PRO-ACT). Our experiment showed promising results with the blender-type ensemble model achieving the best prediction accuracy and highest prognostic potential.

摘要

肌萎缩侧索硬化症(ALS)是一种罕见且具有破坏性的神经退行性疾病,其高度异质且不可避免地致命。由于其进展的不可预测性质,需要准确的工具和算法来预测疾病进展并改善患者护理。为了满足这一需求,我们开发并比较了一套广泛的筛选器-学习者机器学习模型,通过使用公开可用的汇集开放获取临床试验数据库(PRO-ACT),使用 5 种最先进的特征选择算法与 17 种预测模型和 4 种集成模型,准确预测 3 至 12 个月之间的 ALS 功能评定量表(ALSFRS)评分下降。我们的实验结果表明,搅拌机类型的集成模型具有最佳的预测准确性和最高的预后潜力,具有广阔的应用前景。

相似文献

3
Deep learning methods to predict amyotrophic lateral sclerosis disease progression.
Sci Rep. 2022 Aug 12;12(1):13738. doi: 10.1038/s41598-022-17805-9.
5
Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study.
Lancet Digit Health. 2022 May;4(5):e359-e369. doi: 10.1016/S2589-7500(21)00274-0. Epub 2022 Mar 24.
6
Does including machine learning predictions in ALS clinical trial analysis improve statistical power?
Ann Clin Transl Neurol. 2020 Oct;7(10):1756-1765. doi: 10.1002/acn3.51140. Epub 2020 Aug 30.
7
Predicting amyotrophic lateral sclerosis (ALS) progression with machine learning.
Amyotroph Lateral Scler Frontotemporal Degener. 2024 May;25(3-4):242-255. doi: 10.1080/21678421.2023.2285443. Epub 2023 Dec 5.
9
Predicting functional decline and survival in amyotrophic lateral sclerosis.
PLoS One. 2017 Apr 13;12(4):e0174925. doi: 10.1371/journal.pone.0174925. eCollection 2017.
10
RandomForest4Life: a Random Forest for predicting ALS disease progression.
Amyotroph Lateral Scler Frontotemporal Degener. 2014 Sep;15(5-6):444-52. doi: 10.3109/21678421.2014.893361.

本文引用的文献

1
Deep learning methods to predict amyotrophic lateral sclerosis disease progression.
Sci Rep. 2022 Aug 12;12(1):13738. doi: 10.1038/s41598-022-17805-9.
3
Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis.
N Engl J Med. 2020 Sep 3;383(10):919-930. doi: 10.1056/NEJMoa1916945.
4
Being PRO-ACTive: What can a Clinical Trial Database Reveal About ALS?
Neurotherapeutics. 2015 Apr;12(2):417-23. doi: 10.1007/s13311-015-0336-z.
5
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression.
Nat Biotechnol. 2015 Jan;33(1):51-7. doi: 10.1038/nbt.3051. Epub 2014 Nov 2.
6
Gradient boosting machines, a tutorial.
Front Neurorobot. 2013 Dec 4;7:21. doi: 10.3389/fnbot.2013.00021. eCollection 2013.
7
Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).
Cochrane Database Syst Rev. 2012 Mar 14;2012(3):CD001447. doi: 10.1002/14651858.CD001447.pub3.
8
Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).
Cochrane Database Syst Rev. 2002(2):CD001447. doi: 10.1002/14651858.CD001447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验