Federal University of Rio Grande Do Norte, Natal, Brazil.
University of Coimbra, Coimbra, Portugal.
BMC Med Inform Decis Mak. 2024 Mar 19;24(1):80. doi: 10.1186/s12911-024-02484-5.
Prognosticating Amyotrophic Lateral Sclerosis (ALS) presents a formidable challenge due to patients exhibiting different onset sites, progression rates, and survival times. In this study, we have developed and evaluated Machine Learning (ML) algorithms that integrate Ensemble and Imbalance Learning techniques to classify patients into Short and Non-Short survival groups based on data collected during diagnosis. We aimed to identify individuals at high risk of mortality within 24 months of symptom onset through analysis of patient data commonly encountered in daily clinical practice. Our Ensemble-Imbalance approach underwent evaluation employing six ML algorithms as base classifiers. Remarkably, our results outperformed those of individual algorithms, achieving a Balanced Accuracy of 88% and a Sensitivity of 96%. Additionally, we used the Shapley Additive Explanations framework to elucidate the decision-making process of the top-performing model, pinpointing the most important features and their correlations with the target prediction. Furthermore, we presented helpful tools to visualize and compare patient similarities, offering valuable insights. Confirming the obtained results, our approach could aid physicians in devising personalized treatment plans at the time of diagnosis or serve as an inclusion/exclusion criterion in clinical trials.
预测肌萎缩侧索硬化症(ALS)是一项艰巨的挑战,因为患者的起始部位、进展速度和生存时间各不相同。在这项研究中,我们开发并评估了机器学习(ML)算法,这些算法集成了集成和不平衡学习技术,以便根据诊断期间收集的数据将患者分为短生存期和非短生存期组。我们旨在通过分析日常临床实践中常见的患者数据,识别症状发作后 24 个月内死亡率高的个体。我们的集成-不平衡方法采用了六种 ML 算法作为基本分类器进行评估。值得注意的是,我们的结果优于单个算法,达到了 88%的平衡准确率和 96%的灵敏度。此外,我们使用 Shapley Additive Explanations 框架阐明了表现最佳模型的决策过程,确定了最重要的特征及其与目标预测的相关性。此外,我们还提供了有用的工具来可视化和比较患者的相似性,提供有价值的见解。确认了获得的结果,我们的方法可以帮助医生在诊断时制定个性化的治疗计划,或者作为临床试验的纳入/排除标准。