Suppr超能文献

积极主动:临床试验数据库能揭示肌萎缩侧索硬化症的哪些信息?

Being PRO-ACTive: What can a Clinical Trial Database Reveal About ALS?

作者信息

Zach Neta, Ennist David L, Taylor Albert A, Alon Hagit, Sherman Alexander, Kueffner Robert, Walker Jason, Sinani Ervin, Katsovskiy Igor, Cudkowicz Merit, Leitner Melanie L

机构信息

Prize4Life, Tel aviv, Israel,

出版信息

Neurotherapeutics. 2015 Apr;12(2):417-23. doi: 10.1007/s13311-015-0336-z.

Abstract

Advancing research and clinical care, and conducting successful and cost-effective clinical trials requires characterizing a given patient population. To gather a sufficiently large cohort of patients in rare diseases such as amyotrophic lateral sclerosis (ALS), we developed the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) platform. The PRO-ACT database currently consists of >8600 ALS patient records from 17 completed clinical trials, and more trials are being incorporated. The database was launched in an open-access mode in December 2012; since then, >400 researchers from >40 countries have requested the data. This review gives an overview on the research enabled by this resource, through several examples of research already carried out with the goal of improving patient care and understanding the disease. These examples include predicting ALS progression, the simulation of future ALS clinical trials, the verification of previously proposed predictive features, the discovery of novel predictors of ALS progression and survival, the newly identified stratification of patients based on their disease progression profiles, and the development of tools for better clinical trial recruitment and monitoring. Results from these approaches clearly demonstrate the value of large datasets for developing a better understanding of ALS natural history, prognostic factors, patient stratification, and more. The increasing use by the community suggests that further analyses of the PRO-ACT database will continue to reveal more information about this disease that has for so long defied our understanding.

摘要

推进研究和临床护理,以及开展成功且具有成本效益的临床试验,需要对特定患者群体进行特征描述。为了在肌萎缩侧索硬化症(ALS)等罕见疾病中收集足够大的患者队列,我们开发了汇总资源开放获取ALS临床试验(PRO-ACT)平台。PRO-ACT数据库目前包含来自17项已完成临床试验的8600多条ALS患者记录,并且更多试验正在纳入。该数据库于2012年12月以开放获取模式推出;从那时起,来自40多个国家的400多名研究人员请求获取这些数据。本综述通过几个已经开展的以改善患者护理和理解疾病为目标的研究实例,概述了该资源所推动的研究。这些实例包括预测ALS进展、模拟未来的ALS临床试验、验证先前提出的预测特征、发现ALS进展和生存的新预测因子、基于疾病进展概况对患者进行新的分层,以及开发用于更好地进行临床试验招募和监测的工具。这些方法的结果清楚地证明了大型数据集对于更好地理解ALS自然史、预后因素、患者分层等方面的价值。该社区对其使用的增加表明,对PRO-ACT数据库的进一步分析将继续揭示更多关于这种长期以来难以理解的疾病的信息。

相似文献

3
The PRO-ACT database: design, initial analyses, and predictive features.PRO-ACT数据库:设计、初步分析及预测特征
Neurology. 2014 Nov 4;83(19):1719-25. doi: 10.1212/WNL.0000000000000951. Epub 2014 Oct 8.
7
Longitudinal modeling to predict vital capacity in amyotrophic lateral sclerosis.用于预测肌萎缩侧索硬化症肺活量的纵向建模
Amyotroph Lateral Scler Frontotemporal Degener. 2018 May;19(3-4):294-302. doi: 10.1080/21678421.2017.1418003. Epub 2017 Dec 20.

引用本文的文献

7
Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach.
Sci Rep. 2019 Jan 24;9(1):690. doi: 10.1038/s41598-018-36873-4.
10
Epidemiology of ALS in Korea using nationwide big data.韩国使用全国大数据进行 ALS 流行病学研究。
J Neurol Neurosurg Psychiatry. 2019 Apr;90(4):395-403. doi: 10.1136/jnnp-2018-318974. Epub 2018 Nov 8.

本文引用的文献

2
The PRO-ACT database: design, initial analyses, and predictive features.PRO-ACT数据库:设计、初步分析及预测特征
Neurology. 2014 Nov 4;83(19):1719-25. doi: 10.1212/WNL.0000000000000951. Epub 2014 Oct 8.
5
State of play in amyotrophic lateral sclerosis genetics.肌萎缩侧索硬化症遗传学研究进展。
Nat Neurosci. 2014 Jan;17(1):17-23. doi: 10.1038/nn.3584. Epub 2013 Dec 26.
6
Amyotrophic lateral sclerosis disease progression model.肌萎缩侧索硬化症疾病进展模型。
Amyotroph Lateral Scler Frontotemporal Degener. 2014 Mar;15(1-2):119-29. doi: 10.3109/21678421.2013.838970. Epub 2013 Sep 26.
9
Infrastructure resources for clinical research in amyotrophic lateral sclerosis.肌萎缩侧索硬化症临床研究的基础设施资源。
Amyotroph Lateral Scler Frontotemporal Degener. 2013 May;14 Suppl 1:53-61. doi: 10.3109/21678421.2013.779058.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验