Suppr超能文献

无监督 SoftOtsuNet 增强在临床皮肤科图像分类器中的应用。

Unsupervised SoftOtsuNet Augmentation for Clinical Dermatology Image Classifiers.

机构信息

VisualDx, Rochester, NY.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:329-338. eCollection 2023.

Abstract

Data Augmentation is a crucial tool in the Machine Learning (ML) toolbox because it can extract novel, useful training images from an existing dataset, thereby improving accuracy and reducing overfitting in a Deep Neural Network (DNNs). However, clinical dermatology images often contain irrelevant background information,such as furniture and objects in the frame. DNNs make use of that information when optimizing the loss function. Data augmentation methods that preserve this information risk creating biases in the DNN's understanding (for example, that objects in a particular doctor's office are a clue that the patient has cutaneous T-cell lymphoma). Creating a supervised foreground/background segmentation algorithm for clinical dermatology images that removes this irrelevant information would be prohibitively expensive due to labeling costs. To that end, we propose a novel unsupervised DNN that dynamically masks out image information based on a combination of a differentiable adaptation of Otsu's Method and CutOut augmentation. SoftOtsuNet augmentation outperforms all other evaluated augmentation methods on the Fitzpatrick17k dataset ( improvement), Diverse Dermatology Images dataset ( improvement), and our proprietary dataset ( improvement). SoftOtsuNet is only required at training time, meaning inference costs are unchanged from the baseline. This further suggests that even large data-driven models can still benefit from human-engineered unsupervised loss functions.

摘要

数据增强是机器学习 (ML) 工具箱中的一个重要工具,因为它可以从现有数据集中提取新颖、有用的训练图像,从而提高深度神经网络 (DNN) 的准确性并减少过拟合。然而,临床皮肤科图像通常包含无关的背景信息,例如框架中的家具和物体。DNN 在优化损失函数时会利用这些信息。保留这些信息的数据增强方法可能会使 DNN 的理解产生偏差(例如,特定医生办公室中的物体是患者患有皮肤 T 细胞淋巴瘤的线索)。由于标记成本,为临床皮肤科图像创建一个去除这种无关信息的监督性前景/背景分割算法将非常昂贵。为此,我们提出了一种新颖的无监督 DNN,该网络根据 Otsu 方法的可微分自适应和 CutOut 增强的组合动态屏蔽图像信息。在 Fitzpatrick17k 数据集(提高 )、多样化皮肤科图像数据集(提高 )和我们专有的数据集(提高 )上,SoftOtsuNet 增强都优于所有其他评估的增强方法。SoftOtsuNet 仅在训练时需要,这意味着与基线相比,推断成本保持不变。这进一步表明,即使是大型数据驱动模型仍然可以从人为设计的无监督损失函数中受益。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验