Suppr超能文献

通过分类器引导的背景掩码对资源不足的皮肤病诊断进行稳健的视觉识别。

Robust Visual Identification of Under-resourced Dermatological Diagnoses with Classifier-Steered Background Masking.

作者信息

Dominguez Miguel, Wolf Julie Ryan, Prasad Paritosh, Enbiale Wendemagegn, Gottlieb Michael, Berdahl Carl T, Papier Art

机构信息

VisualDx.

University of Rochester Medical Center.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:368-377. eCollection 2024.

Abstract

Collecting images of rare dermatological diseases for machine learning detection applications is a costly, laborious task. It is difficult to collect enough images of these diagnoses to avoid the risk of low accuracy "in the wild". One of the sources of bias in these networks is irrelevant background pixel data. These pixels necessarily have no clinical significance, yet Deep Neural Networks will make weak correlations based on that information. To reduce their ability to do this, we introduce a masking augmentation algorithm, InfoMax-Cutout. It employs unsupervised Information Maximization losses to mask out background pixels. InfoMax-Cutout increased accuracy on classifying 319 diagnoses by 0.76%. These features generalized to an unseen diagnosis task (Fitzpatrick 17k), improving accuracy over a baseline by 43.3% and reducing Gini inequality by 20.9%. This approach of learning to separate out background pixels can increase accuracy in detecting diseases in Lower and Middle Income Countries.

摘要

为机器学习检测应用收集罕见皮肤病图像是一项成本高昂且费力的任务。很难收集到足够的这些诊断图像,以避免在“自然环境”中出现低准确率的风险。这些网络中偏差的来源之一是无关的背景像素数据。这些像素必然没有临床意义,但深度神经网络会基于这些信息建立微弱的相关性。为了降低它们这样做的能力,我们引入了一种掩码增强算法,即InfoMax-Cutout。它采用无监督信息最大化损失来屏蔽背景像素。InfoMax-Cutout将319种诊断的分类准确率提高了0.76%。这些特征推广到了一个未见过的诊断任务(Fitzpatrick 17k),使准确率比基线提高了43.3%,基尼不平等降低了20.9%。这种学习分离背景像素的方法可以提高低收入和中等收入国家疾病检测的准确率。

相似文献

10
Self-supervised multi-modality learning for multi-label skin lesion classification.用于多标签皮肤病变分类的自监督多模态学习
Comput Methods Programs Biomed. 2025 Jun;265:108729. doi: 10.1016/j.cmpb.2025.108729. Epub 2025 Apr 1.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验