测序后时代的结构与功能预测、评估及验证
Structural and functional prediction, evaluation, and validation in the post-sequencing era.
作者信息
Li Chang, Luo Yixuan, Xie Yibo, Zhang Zaifeng, Liu Ye, Zou Lihui, Xiao Fei
机构信息
Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
出版信息
Comput Struct Biotechnol J. 2023 Dec 25;23:446-451. doi: 10.1016/j.csbj.2023.12.031. eCollection 2024 Dec.
The surge of genome sequencing data has underlined substantial genetic variants of uncertain significance (VUS). The decryption of VUS discovered by sequencing poses a major challenge in the post-sequencing era. Although experimental assays have progressed in classifying VUS, only a tiny fraction of the human genes have been explored experimentally. Thus, it is urgently needed to generate state-of-the-art functional predictors of VUS in silico. Artificial intelligence (AI) is an invaluable tool to assist in the identification of VUS with high efficiency and accuracy. An increasing number of studies indicate that AI has brought an exciting acceleration in the interpretation of VUS, and our group has already used AI to develop protein structure-based prediction models. In this review, we provide an overview of the previous research on AI-based prediction of missense variants, and elucidate the challenges and opportunities for protein structure-based variant prediction in the post-sequencing era.
基因组测序数据的激增凸显了大量意义未明的基因变异(VUS)。测序发现的VUS的解密在测序后时代构成了重大挑战。尽管实验分析在VUS分类方面取得了进展,但仅对一小部分人类基因进行了实验探索。因此,迫切需要在计算机上生成最先进的VUS功能预测器。人工智能(AI)是协助高效、准确识别VUS的宝贵工具。越来越多的研究表明,AI在VUS解释方面带来了令人兴奋的加速,并且我们团队已经使用AI开发了基于蛋白质结构的预测模型。在本综述中,我们概述了先前基于AI预测错义变异的研究,并阐明了测序后时代基于蛋白质结构的变异预测所面临的挑战和机遇。
相似文献
Comput Struct Biotechnol J. 2023-12-25
Comput Methods Programs Biomed. 2023-8
Brief Bioinform. 2023-9-22
Hered Cancer Clin Pract. 2012-7-23
引用本文的文献
Am J Hum Genet. 2025-5-1
本文引用的文献
Science. 2023-9-22
Bioinformatics. 2023-9-2
Nat Mach Intell. 2022-11
Genome Biol. 2023-7-3
Bioinformatics. 2023-5-4