Young Rachel E, Nelson Katherine M, Hofbauer Samuel I, Vijayakumar Tara, Alameh Mohamad-Gabriel, Weissman Drew, Papachristou Charalampos, Gleghorn Jason P, Riley Rachel S
Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
School of Translational Biomedical Engineering & Sciences, Virtua College of Medicine & Life Sciences of Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
Bioact Mater. 2023 Dec 22;34:125-137. doi: 10.1016/j.bioactmat.2023.11.014. eCollection 2024 Apr.
Ionizable lipid nanoparticles (LNPs) have gained attention as mRNA delivery platforms for vaccination against COVID-19 and for protein replacement therapies. LNPs enhance mRNA stability, circulation time, cellular uptake, and preferential delivery to specific tissues compared to mRNA with no carrier platform. However, LNPs are only in the beginning stages of development for safe and effective mRNA delivery to the placenta to treat placental dysfunction. Here, we develop LNPs that enable high levels of mRNA delivery to trophoblasts and to the placenta with no toxicity. We conducted a Design of Experiments to explore how LNP composition, including the type and molar ratio of each lipid component, drives trophoblast and placental delivery. Our data revealed that utilizing C12-200 as the ionizable lipid and 1,2-dioleoyl--glycero-3-phosphoethanolamine (DOPE) as the phospholipid in the LNP design yields high transfection efficiency . Analysis of lipid molar composition as a design parameter in LNPs displayed a strong correlation between apparent pKa and poly (ethylene) glycol (PEG) content, as a reduction in PEG molar amount increases apparent pKa. Further, we present one LNP platform that exhibits the highest delivery of placental growth factor mRNA to the placenta in pregnant mice, resulting in synthesis and secretion of a potentially therapeutic protein. Lastly, our high-performing LNPs have no toxicity to both the pregnant mice and fetuses. Our results demonstrate the feasibility of LNPs as a platform for mRNA delivery to the placenta, and our top LNP formulations may provide a therapeutic platform to treat diseases that originate from placental dysfunction during pregnancy.
可电离脂质纳米颗粒(LNPs)作为用于COVID-19疫苗接种和蛋白质替代疗法的mRNA递送平台受到了关注。与没有载体平台的mRNA相比,LNPs增强了mRNA的稳定性、循环时间、细胞摄取以及对特定组织的优先递送。然而,LNPs在安全有效地将mRNA递送至胎盘以治疗胎盘功能障碍方面仍处于开发初期。在此,我们开发了能够将高水平mRNA递送至滋养层细胞和胎盘且无毒性的LNPs。我们进行了一项实验设计,以探索LNP组成,包括每种脂质成分的类型和摩尔比,如何驱动滋养层细胞和胎盘的递送。我们的数据表明,在LNP设计中使用C12-200作为可电离脂质和1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)作为磷脂可产生高转染效率。将脂质摩尔组成作为LNPs中的一个设计参数进行分析显示,表观pKa与聚乙二醇(PEG)含量之间存在很强的相关性,因为PEG摩尔量的减少会增加表观pKa。此外,我们展示了一种LNP平台,该平台在怀孕小鼠中向胎盘递送胎盘生长因子mRNA的水平最高,从而导致一种潜在治疗性蛋白质的合成和分泌。最后,我们性能优异的LNPs对怀孕小鼠和胎儿均无毒性。我们的结果证明了LNPs作为向胎盘递送mRNA的平台的可行性,并且我们最佳的LNP制剂可能提供一个治疗平台,用于治疗怀孕期间源自胎盘功能障碍的疾病。