Quadiri Afshana, Prakash Swayam, Zayou Latifa, Dhanushkodi Nisha Rajeswari, Chilukuri Amruth, Ryan Gemma, Wang Kelly, Vahed Hawa, Chentoufi Aziz A, BenMohamed Lbachir
Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada.
Vaccines (Basel). 2025 Jan 8;13(1):47. doi: 10.3390/vaccines13010047.
BACKGROUND: Nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) have emerged as a promising vaccine strategy, especially for COVID-19. While the LNPs protect mRNA from degradation and efficiently deliver the mRNA to antigen-presenting cells, the effect of lipid composition on the immunogenicity and protective efficacy of mRNA/LNP vaccines is not well characterized. Studies on using the mRNA/LNP platform for vaccines have largely focused on the nucleic acid cargo with less attention paid to the LNP vehicle. Whether the composition and biophysical properties of LNPs impact vaccine performance remains to be fully elucidated. METHODS: In the present study, we used SARS-CoV-2 Spike-mRNA as a prototype vaccine to study the effect of four different LNPs with various lipid compositions. RESULTS: We demonstrate that when the same Spike-mRNA was delivered in the LNP4 formulation based on phospholipid 1,2-dioleoyl-sn-glycero-3-Phosphoethanolamine, it outperformed other LNPs (LNP1, LNP2, and LNP3) that are based on different lipids. Compared to the other three LNPs, LNP4 (i) enhanced the phenotypic and functional maturation of dendritic cells; (ii) induced strong T-cell responses; (iii) increased the secretion of proinflammatory cytokines and pro-follicular T helper (Tfh) cell cytokines; (iv) induced higher neutralization IgG titers; and (v) provided better protection against SARS-CoV-2 infection and COVID-19-like symptoms in the hamster model. Furthermore, we compared LNP-4 with the commercially available LNPs and found it to provide better T-cell immunity against COVID-19 in hamsters. CONCLUSION: This study suggests mRNA vaccines encapsulated in Phospholipid 1,2-Dioleoyl-sn-Glycero-3-PhosphoEthanolamine containing LNPs induced Potent B- and T cell immunity. The mechanisms by which Phospholipid 1,2-Dioleoyl-sn-Glycero-3-PhosphoEthanolamine-based LNPs may activate protective B and T cells are discussed.
背景:包裹在脂质纳米颗粒(LNP)中的核苷修饰mRNA已成为一种有前景的疫苗策略,尤其是针对新冠病毒病(COVID-19)。虽然LNP可保护mRNA不被降解,并能有效地将mRNA递送至抗原呈递细胞,但脂质组成对mRNA/LNP疫苗免疫原性和保护效力的影响尚未得到充分表征。关于使用mRNA/LNP平台制备疫苗的研究主要集中在核酸负载上,而对LNP载体的关注较少。LNP的组成和生物物理性质是否会影响疫苗性能仍有待充分阐明。 方法:在本研究中,我们使用严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白mRNA作为原型疫苗,研究四种具有不同脂质组成的LNP的作用。 结果:我们证明,当相同的刺突蛋白mRNA以基于1,2-二油酰-sn-甘油-3-磷酸乙醇胺的LNP4配方递送时,其表现优于基于不同脂质的其他LNP(LNP1、LNP2和LNP3)。与其他三种LNP相比,LNP4(i)增强了树突状细胞的表型和功能成熟;(ii)诱导强烈的T细胞反应;(iii)增加促炎细胞因子和滤泡辅助性T(Tfh)细胞细胞因子的分泌;(iv)诱导更高的中和IgG滴度;以及(v)在仓鼠模型中对SARS-CoV-2感染和类COVID-19症状提供更好的保护。此外,我们将LNP-4与市售LNP进行比较,发现它在仓鼠中对COVID-19提供了更好的T细胞免疫。 结论:本研究表明,包裹在含有1,2-二油酰-sn-甘油-3-磷酸乙醇胺的LNP中的mRNA疫苗可诱导强大的B细胞和T细胞免疫。讨论了基于1,2-二油酰-sn-甘油-3-磷酸乙醇胺的LNP激活保护性B细胞和T细胞的机制。
Int J Nanomedicine. 2022
Biomater Sci. 2023-1-31
Expert Opin Ther Targets. 2024-5
Int J Parasitol. 2024-10
Commun Med (Lond). 2023-6-19
Vaccines (Basel). 2023-3-14
J Am Chem Soc. 2023-2-1