Suppr超能文献

基于神经元突触强度的记忆持续性活动自发丧失的机制描述。

Mechanistic description of spontaneous loss of memory persistent activity based on neuronal synaptic strength.

作者信息

Sanhedrai Hillel, Havlin Shlomo, Dvir Hila

机构信息

Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.

出版信息

Heliyon. 2023 Dec 21;10(1):e23949. doi: 10.1016/j.heliyon.2023.e23949. eCollection 2024 Jan 15.

Abstract

Persistent neural activity associated with working memory (WM) lasts for a limited time duration. Current theories suggest that its termination is obtained via inhibitory currents, and there is currently no theory regarding the possibility of a memory-loss mechanism that terminates memory persistent activity. Here, we develop an analytical-framework, based on synaptic strength, and show via simulations and fitting to wet-lab experiments, that passive memory-loss might be a result of an ionic-current long-term plateau, i.e., very slow reduction of memory followed by abrupt loss. We describe analytically the plateau, when the memory state is just below criticality. These results, including the plateau, are supported by experiments performed on rats. Moreover, we show that even just above criticality, forgetfulness can occur due to neuronal noise with ionic-current fluctuations, yielding a plateau, representing memory with very slow decay, and eventually a fast memory decay. Our results could have implications for developing new medications, targeted against memory impairments, through modifying neuronal noise.

摘要

与工作记忆(WM)相关的持续性神经活动持续时间有限。当前理论认为,其终止是通过抑制性电流实现的,目前尚无关于终止记忆持续性活动的失忆机制可能性的理论。在此,我们基于突触强度开发了一个分析框架,并通过模拟以及与湿实验室实验拟合表明,被动失忆可能是离子电流长期平稳期的结果,即记忆非常缓慢地减少,随后突然丧失。当记忆状态略低于临界值时,我们对该平稳期进行了分析描述。这些结果,包括平稳期,得到了在大鼠身上进行的实验的支持。此外,我们表明,即使略高于临界值,由于离子电流波动引起的神经元噪声也可能导致遗忘,产生一个平稳期,代表记忆非常缓慢地衰减,最终快速记忆衰退。我们的结果可能对通过调节神经元噪声开发针对记忆障碍的新药物具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef37/10787259/ebc96fbc8e3b/gr001.jpg

相似文献

1
Mechanistic description of spontaneous loss of memory persistent activity based on neuronal synaptic strength.
Heliyon. 2023 Dec 21;10(1):e23949. doi: 10.1016/j.heliyon.2023.e23949. eCollection 2024 Jan 15.
2
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
J Neurosci. 2017 Jan 4;37(1):83-96. doi: 10.1523/JNEUROSCI.1989-16.2016.
3
Exact neural mass model for synaptic-based working memory.
PLoS Comput Biol. 2020 Dec 15;16(12):e1008533. doi: 10.1371/journal.pcbi.1008533. eCollection 2020 Dec.
4
Circuit mechanisms for the maintenance and manipulation of information in working memory.
Nat Neurosci. 2019 Jul;22(7):1159-1167. doi: 10.1038/s41593-019-0414-3. Epub 2019 Jun 10.
5
Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
J Neurophysiol. 2000 Mar;83(3):1733-50. doi: 10.1152/jn.2000.83.3.1733.
7
Synaptic Correlates of Working Memory Capacity.
Neuron. 2017 Jan 18;93(2):323-330. doi: 10.1016/j.neuron.2016.12.004. Epub 2016 Dec 29.
8
Working and Reference Memory Tasks Trigger Opposed Long-Term Synaptic Changes in the Rat Dentate Gyrus.
Cereb Cortex. 2021 May 10;31(6):2980-2992. doi: 10.1093/cercor/bhaa405.
10
Memory decay and loss of criticality in quorum percolation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062134. doi: 10.1103/PhysRevE.88.062134. Epub 2013 Dec 20.

引用本文的文献

1
Evaluating in-vivo spontaneous firing rate in the brain based on neuronal noise modeling.
Commun Biol. 2025 Aug 26;8(1):1281. doi: 10.1038/s42003-025-08667-8.

本文引用的文献

1
Excess Entropies Suggest the Physiology of Neurons to Be Primed for Higher-Level Computation.
Phys Rev Lett. 2021 Oct 1;127(14):148101. doi: 10.1103/PhysRevLett.127.148101.
2
Loss of Long-Term Potentiation at Hippocampal Output Synapses in Experimental Temporal Lobe Epilepsy.
Front Mol Neurosci. 2020 Aug 28;13:143. doi: 10.3389/fnmol.2020.00143. eCollection 2020.
3
Macroscopic gradients of synaptic excitation and inhibition in the neocortex.
Nat Rev Neurosci. 2020 Mar;21(3):169-178. doi: 10.1038/s41583-020-0262-x. Epub 2020 Feb 6.
4
A Biased Diffusion Approach to Sleep Dynamics Reveals Neuronal Characteristics.
Biophys J. 2019 Sep 3;117(5):987-997. doi: 10.1016/j.bpj.2019.07.032. Epub 2019 Jul 29.
5
Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome.
Sci Adv. 2018 Apr 25;4(4):eaar6277. doi: 10.1126/sciadv.aar6277. eCollection 2018 Apr.
6
Network science of biological systems at different scales: A review.
Phys Life Rev. 2018 Mar;24:118-135. doi: 10.1016/j.plrev.2017.11.003. Epub 2017 Nov 3.
7
Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory.
Annu Rev Neurosci. 2017 Jul 25;40:603-627. doi: 10.1146/annurev-neuro-070815-014006.
8
Basin stability in delayed dynamics.
Sci Rep. 2016 Feb 24;6:21449. doi: 10.1038/srep21449.
9
Universal resilience patterns in complex networks.
Nature. 2016 Feb 18;530(7590):307-12. doi: 10.1038/nature16948.
10
Simultaneous first- and second-order percolation transitions in interdependent networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012803. doi: 10.1103/PhysRevE.90.012803. Epub 2014 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验