Liu Stephen Z, Zhao Chumin, Herbst Magdalena, Weber Thomas, Vogt Sebastian, Ritschl Ludwig, Kappler Steffen, Siewerdsen Jeffrey H, Zbijewski Wojciech
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205.
Siemens Healthineers, Forchhelm 91301, Germany.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2613211. Epub 2022 Apr 4.
We investigated the feasibility of detection and quantification of bone marrow edema (BME) using dual-energy (DE) Cone-Beam CT (CBCT) with a dual-layer flat panel detector (FPD) and three-material decomposition.
A realistic CBCT system simulator was applied to study the impact of detector quantization, scatter, and spectral calibration errors on the accuracy of fat-water-bone decompositions of dual-layer projections. The CBCT system featured 975 mm source-axis distance, 1,362 mm source-detector distance and a 430 × 430 mm dual-layer FPD (top layer: 0.20 mm CsI:Tl, bottom layer: 0.55 mm CsI:Tl; a 1 mm Cu filter between the layers to improve spectral separation). Tube settings were 120 kV (+2 mm Al, +0.2 mm Cu) and 10 mAs per exposure. The digital phantom consisted of a 160 mm water cylinder with inserts containing mixtures of water (volume fraction ranging 0.18 to 0.46) - fat (0.5 to 0.7) - Ca (0.04 to 0.12); decreasing fractions of fat indicated increasing degrees of BME. A two-stage three-material DE decomposition was applied to DE CBCT projections: first, projection-domain decomposition (PDD) into fat-aluminum basis, followed by CBCT reconstruction of intermediate base images, followed by image-domain change of basis into fat, water and bone. Sensitivity to scatter was evaluated by i) adjusting source collimation (12 to 400 mm width) and ii) subtracting various fractions of the true scatter from the projections at 400 mm collimation. The impact of spectral calibration was studied by shifting the effective beam energy (± 2 keV) when creating the PDD lookup table. We further simulated a realistic BME imaging framework, where the scatter was estimated using a fast Monte Carlo (MC) simulation from a preliminary decomposition of the object; the object was a realistic wrist phantom with an 0.85 mL BME stimulus in the radius.
The decomposition is sensitive to scatter: approx. <20 mm collimation width or <10% error of scatter correction in a full field-of-view setting is needed to resolve BME. A mismatch in PDD decomposition calibration of ± 1 keV results in ~25% error in fat fraction estimates. In the wrist phantom study with MC scatter corrections, we were able to achieve ~0.79 mL true positive and ~0.06 mL false positive BME detection (compared to 0.85 mL true BME volume).
Detection of BME using DE CBCT with dual-layer FPD is feasible, but requires scatter mitigation, accurate scatter estimation, and robust spectral calibration.
我们研究了使用具有双层平板探测器(FPD)和三物质分解的双能(DE)锥束CT(CBCT)检测和量化骨髓水肿(BME)的可行性。
应用逼真的CBCT系统模拟器研究探测器量化、散射和光谱校准误差对双层投影脂肪-水-骨分解精度的影响。CBCT系统的特征为源轴距975mm、源探测器距1362mm以及430×430mm的双层FPD(顶层:0.20mm CsI:Tl,底层:0.55mm CsI:Tl;两层之间有1mm铜滤过器以改善光谱分离)。管设置为每次曝光120kV(+2mm铝,+0.2mm铜)和10mAs。数字体模由一个160mm的水缸组成,内部包含水(体积分数范围0.18至0.46)-脂肪(0.5至0.7)-钙(0.04至0.12)的混合物;脂肪分数降低表明BME程度增加。对DE CBCT投影应用两阶段三物质DE分解:首先,在投影域分解(PDD)为脂肪-铝基,然后对中间基图像进行CBCT重建,接着在图像域将基变换为脂肪、水和骨。通过以下方式评估对散射的敏感性:i)调整源准直(宽度12至400mm)和ii)在400mm准直时从投影中减去不同比例的真实散射。通过在创建PDD查找表时移动有效束能量(±2keV)来研究光谱校准的影响。我们进一步模拟了一个逼真的BME成像框架,其中使用快速蒙特卡罗(MC)模拟从对象的初步分解中估计散射;对象是一个逼真的腕部体模,桡骨中有0.85mL的BME刺激。
分解对散射敏感:在全视野设置中,需要约<20mm的准直宽度或<10%的散射校正误差才能分辨BME。PDD分解校准中±1keV的不匹配导致脂肪分数估计误差约为25%。在采用MC散射校正的腕部体模研究中,我们能够实现约0.79mL的真阳性和约0.06mL的假阳性BME检测(与0.85mL的真实BME体积相比)。
使用具有双层FPD的DE CBCT检测BME是可行的,但需要减轻散射、准确估计散射以及进行稳健的光谱校准。