Suppr超能文献

用于光谱CT的基于统计图像重建的多材料分解

Multi-material decomposition using statistical image reconstruction for spectral CT.

作者信息

Long Yong, Fessler Jeffrey A

出版信息

IEEE Trans Med Imaging. 2014 Aug;33(8):1614-26. doi: 10.1109/TMI.2014.2320284. Epub 2014 Apr 25.

Abstract

Spectral computed tomography (CT) provides information on material characterization and quantification because of its ability to separate different basis materials. Dual-energy (DE) CT provides two sets of measurements at two different source energies. In principle, two materials can be accurately decomposed from DECT measurements. However, many clinical and industrial applications require three or more material images. For triple-material decomposition, a third constraint, such as volume conservation, mass conservation or both, is required to solve three sets of unknowns from two sets of measurements. The recently proposed flexible image-domain (ID) multi-material decomposition) method assumes each pixel contains at most three materials out of several possible materials and decomposes a mixture pixel by pixel. We propose a penalized-likelihood (PL) method with edge-preserving regularizers for each material to reconstruct multi-material images using a similar constraint from sinogram data. We develop an optimization transfer method with a series of pixel-wise separable quadratic surrogate (PWSQS) functions to monotonically decrease the complicated PL cost function. The PWSQS algorithm separates pixels to allow simultaneous update of all pixels, but keeps the basis materials coupled to allow faster convergence rate than our previous proposed material- and pixel-wise SQS algorithms. Comparing with the ID method using 2-D fan-beam simulations, the PL method greatly reduced noise, streak and cross-talk artifacts in the reconstructed basis component images, and achieved much smaller root mean square errors.

摘要

光谱计算机断层扫描(CT)因其能够分离不同的基础材料而提供有关材料表征和定量的信息。双能(DE)CT在两个不同的源能量下提供两组测量值。原则上,可以从双能CT测量中准确分解出两种材料。然而,许多临床和工业应用需要三个或更多的材料图像。对于三材料分解,需要第三个约束条件,如体积守恒、质量守恒或两者兼具,以便从两组测量值中求解三组未知数。最近提出的灵活图像域(ID)多材料分解方法假设每个像素在几种可能的材料中最多包含三种材料,并逐像素分解混合像素。我们提出了一种带有边缘保留正则化器的惩罚似然(PL)方法,用于每种材料,以使用来自正弦图数据的类似约束来重建多材料图像。我们开发了一种优化传递方法,该方法具有一系列逐像素可分离的二次替代(PWSQS)函数,以单调降低复杂的PL成本函数。PWSQS算法分离像素以允许同时更新所有像素,但保持基础材料耦合,以实现比我们之前提出的逐材料和逐像素SQS算法更快的收敛速度。与使用二维扇形束模拟的ID方法相比,PL方法在重建的基础成分图像中大大降低了噪声、条纹和串扰伪影,并实现了小得多的均方根误差。

相似文献

1
Multi-material decomposition using statistical image reconstruction for spectral CT.用于光谱CT的基于统计图像重建的多材料分解
IEEE Trans Med Imaging. 2014 Aug;33(8):1614-26. doi: 10.1109/TMI.2014.2320284. Epub 2014 Apr 25.

引用本文的文献

3
4
Image Reconstruction of Multiple Basis Materials With Data Augmentation in DECT.基于双能CT数据增强的多种基础材料图像重建
IEEE Trans Biomed Eng. 2025 May;72(5):1553-1561. doi: 10.1109/TBME.2024.3512420. Epub 2025 Apr 23.
6
CT in musculoskeletal imaging: still helpful and for what?CT 在肌肉骨骼成像中的应用:仍有帮助,适用于哪些情况?
Skeletal Radiol. 2024 Sep;53(9):1711-1725. doi: 10.1007/s00256-024-04737-w. Epub 2024 Jul 6.

本文引用的文献

3
A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.一种用于双能 CT 图像的多物质分解的灵活方法。
IEEE Trans Med Imaging. 2014 Jan;33(1):99-116. doi: 10.1109/TMI.2013.2281719. Epub 2013 Sep 16.
5
MicroCT with energy-resolved photon-counting detectors.能谱 CT 技术,采用能量分辨光子计数探测器。
Phys Med Biol. 2011 May 7;56(9):2791-816. doi: 10.1088/0031-9155/56/9/011. Epub 2011 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验