Chen Zitao, Cheng Haoyan, Cao Zhenming, Zhu Jiawei, Blum Thomas, Zhang Qinyuan, Chi Miaofang, Xia Younan
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
Nano Lett. 2024 Jan 31;24(4):1392-1398. doi: 10.1021/acs.nanolett.3c04601. Epub 2024 Jan 16.
Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.
长期以来,纳米颗粒烧结一直是开发用于高温环境的催化系统的主要挑战。在此,我们报告了一项电子显微镜研究,该研究针对一种由硒修饰的碳载体上的亚2纳米铂纳米颗粒组成的催化系统的卓越抗烧结性能。当加热到700°C时,铂纳米颗粒的平均尺寸仅从1.6纳米增加到2.2纳米,而铂纳米颗粒的晶体结构以及{111}和{100}晶面则得到了很好的保留。我们的电子显微镜分析表明,卓越的抗烧结性能源于铂-硒相互作用。通过能量色散X射线元素映射和电子能量损失谱证实,铂纳米颗粒周围的硒原子在加热过程中能够存活下来。这项工作不仅有助于理解这种催化材料热行为背后的物理原理,也为抗烧结催化系统的未来发展提供了启示。