Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
ACS Nano. 2024 Jan 30;18(4):3331-3348. doi: 10.1021/acsnano.3c10117. Epub 2024 Jan 16.
Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-β (TGF-β) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-β simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-β, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-β codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.
目前,有限的光敏剂同时具有逆转肿瘤缺氧和降低程序性死亡配体 1(PD-L1)和转化生长因子-β(TGF-β)表达的能力,但由于获得性免疫抵抗和肿瘤缺氧微环境的存在,阻碍了完美的光动力疗法(PDT)效果。为了应对这些挑战,在这项研究中,我们证明了通过抑制线粒体能量代谢可以作为一种创新而有效的方法来同时降低 PD-L1 和 TGF-β 的表达,这可能为更理想的 PDT 纳米系统提供设计策略。通过对 5637 细胞的蛋白质组学分析,我们发现他莫昔芬(TMX)可以不可思议地调节肿瘤细胞中的 PD-L1 表达。然后,为了选择性地将临床使用的线粒体能量代谢抑制剂 TMX 递送到实体瘤中,并设计一个理想的 PDT 纳米系统,我们通过与白蛋白(ALB)自组装将靶向线粒体的七甲川花菁 PDT 染料 MHI 与 TMX 结合合成了 MHI-TMX@ALB。有趣的是,MHI-TMX@ALB 纳米颗粒在较低剂量(TMX 的 7.5 倍)下即可有效逆转肿瘤缺氧并抑制 PD-L1 蛋白表达,从而通过增强 T 细胞浸润来增强光动力免疫治疗的效果。除此之外,利用七甲川花菁染料对肿瘤的靶向能力和 TMX 抑制 TGF-β 的作用,MHI-TMX@ALB 还能更有效地抑制 4T1 肿瘤肺转移的发展。总之,MHI-TMX@ALB 纳米颗粒可作为一种多功能经济的 PD-L1 和 TGF-β 共抑制免疫调节策略,拓宽了更理想 PDT 纳米系统的潜在临床应用。
J Control Release. 2022-12
J Immunother Cancer. 2022-7
Theranostics. 2025-4-13
Curr Issues Mol Biol. 2024-7-8