Suppr超能文献

磷掺杂碳网络电催化剂可加速钠硫电池中多硫化物的氧化还原动力学

Phosphor-Doped Carbon Network Electrocatalyst Enables Accelerated Redox Kinetics of Polysulfides for Sodium-Sulfur Batteries.

作者信息

Wang Yue, Wang Yanjun, Xu Chiwei, Meng Yuhang, Liu Pengyuan, Huang Chaobo, Yang Lijun, Li Ruiqing, Tang Shaochun, Zeng Jinjue, Wang Xuebin

机构信息

National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China.

College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

出版信息

ACS Nano. 2024 Jan 30;18(4):3839-3849. doi: 10.1021/acsnano.3c12754. Epub 2024 Jan 16.

Abstract

Lithium-ion batteries, which have dominated large-scale energy storage for the past three decades, face limitations in energy density and cost. Sulfur, with its impressive capacity of 1675 mAh g and high theoretical energy density of 1274 Wh kg, stands out as a promising cathode material, leading to a growing focus on sodium-sulfur (Na-S) batteries as an alternative to address lithium resource scarcity. Nevertheless, the development is restrained by poor conductivity, volume expansion of the sulfur cathode, and the shuttle effect of sodium polysulfides (NaS) in the electrolytes. In this study, a facile method is designed to fabricate phosphor-doped carbon (-C), which is then used as a sulfur matrix. This micromesoporous -C network enhances sulfur utilization, increases overall cathode conductivity, and effectively mitigates the shuttling of NaS. During the discharge process, -C can absorb soluble NaS and increase the conductivity of sulfur, while serving as a reservoir for electrolyte and NaS, thereby preventing their infiltration into the anode and reducing the loss of sodium. As a result, the well-designed sulfur-loaded -C (S/-C) cathode, employed in the Na-S battery, demonstrates a capacity of 1034 mAh g at 0.1 C (1 C = 1675 mA g) and an excellent rate capability of 339 mAh g at 10 C, coupled with a prolonged cycling life up to 2000 cycles at 1 C, exhibiting an ultralow capacity decay rate of 0.013% per cycle. Overall, this study introduces an efficient method for creating long-lasting Na-S batteries.

摘要

在过去三十年里主导大规模储能领域的锂离子电池,在能量密度和成本方面面临局限。硫具有令人瞩目的1675 mAh g的容量以及1274 Wh kg的高理论能量密度,作为一种有前景的阴极材料脱颖而出,这使得人们越来越关注钠硫(Na-S)电池,将其作为解决锂资源稀缺问题的一种替代方案。然而,其发展受到硫阴极导电性差、体积膨胀以及多硫化钠(NaS)在电解质中的穿梭效应的限制。在本研究中,设计了一种简便方法来制备磷掺杂碳(-C),然后将其用作硫基质。这种微孔-介孔-C网络提高了硫的利用率,增加了整个阴极的导电性,并有效减轻了NaS的穿梭。在放电过程中,-C可以吸收可溶性NaS并提高硫的导电性,同时作为电解质和NaS的储存库,从而防止它们渗透到阳极并减少钠的损失。结果,用于Na-S电池的精心设计的负载硫的-C(S/-C)阴极在0.1 C(1 C = 1675 mA g)下表现出1034 mAh g的容量,在10 C下具有339 mAh g的优异倍率性能,并且在1 C下循环寿命延长至2000次循环,每循环的容量衰减率超低,仅为0.013%。总体而言,本研究介绍了一种制造长效Na-S电池的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验