Suppr超能文献

由双相牵引力驱动的细胞运动的连续体力学模型。

A continuum mechanical model of cell motion driven by a biphasic traction stress.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J R Soc Interface. 2024 Jan;21(210):20230543. doi: 10.1098/rsif.2023.0543. Epub 2024 Jan 17.

Abstract

The aim of this paper is to place the cell locomotion problem within the general framework of classical continuum mechanics, and while doing so, to account for the deformation of the actin network in the cytoskeleton; the myosin activity on the lamellum including its effect on depolymerization at the trailing edge; model the stress-dependent driving forces and kinetic laws controlling polymerization at the leading edge, depolymerization at the trailing edge and ATP hydrolysis consistently with the dissipation inequality; and, based on the observations in Gardel (Gardel 2008 , 999-1005 (doi:10.1083/jcb.200810060)), include a biphasic velocity-dependent traction stress acting on the actin network. While we chose certain specific models for each of these, in part to allow for an analytical solution, the generality of the framework allows one to readily introduce different constitutive laws to describe these phenomena as might be needed, for example, to study some different type of cells. As described in §5, the predictions of the model compare well with observations such as the magnitude of the very different actin retrograde speeds in the lamellum and lamellipodium including their jump at the interface, the magnitude of the cell speed, and the relative lengths of the lamellipodium and lamellum.

摘要

本文旨在将细胞迁移问题置于经典连续介质力学的一般框架内,并在此过程中考虑细胞骨架中肌动蛋白网络的变形;在翼片上的肌球蛋白活性,包括其对尾部解聚的影响;一致地用耗散不等式来模拟控制前缘聚合、尾部解聚和 ATP 水解的依赖于应力的驱动力和动力学定律;并且,基于 Gardel 的观察结果 (Gardel 2008, 999-1005 (doi:10.1083/jcb.200810060)),包括作用于肌动蛋白网络的双相速度依赖性牵引力。虽然我们为每个模型选择了某些特定的模型,部分原因是为了允许分析解,但是该框架的通用性允许人们很容易地引入不同的本构定律来描述这些现象,例如,研究一些不同类型的细胞。如第 5 节所述,该模型的预测与观察结果非常吻合,例如翼片中非常不同的肌动蛋白逆行速度及其在界面处的跳跃、细胞速度的大小以及翼片和翼片的相对长度。

相似文献

1
A continuum mechanical model of cell motion driven by a biphasic traction stress.
J R Soc Interface. 2024 Jan;21(210):20230543. doi: 10.1098/rsif.2023.0543. Epub 2024 Jan 17.
3
Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9660-5. doi: 10.1073/pnas.0300552101. Epub 2004 Jun 21.
5
Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front.
Biophys J. 2012 Apr 18;102(8):1746-56. doi: 10.1016/j.bpj.2012.03.006.
6
On the generation of force required for actin-based motility.
Sci Rep. 2024 Aug 8;14(1):18384. doi: 10.1038/s41598-024-69422-3.
7
Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization.
Biomed Res Int. 2017;2017:7804251. doi: 10.1155/2017/7804251. Epub 2017 Jan 26.
8
Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed.
J Cell Biol. 2008 Dec 15;183(6):999-1005. doi: 10.1083/jcb.200810060.
9
Lamellipodium tip actin barbed ends serve as a force sensor.
Genes Cells. 2019 Nov;24(11):705-718. doi: 10.1111/gtc.12720. Epub 2019 Oct 10.
10
Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes.
PLoS Comput Biol. 2021 Oct 18;17(10):e1009506. doi: 10.1371/journal.pcbi.1009506. eCollection 2021 Oct.

本文引用的文献

1
Contact guidance as a consequence of coupled morphological evolution and motility of adherent cells.
Biomech Model Mechanobiol. 2022 Aug;21(4):1043-1065. doi: 10.1007/s10237-022-01570-9. Epub 2022 Apr 27.
2
Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24670-24678. doi: 10.1073/pnas.2011785117. Epub 2020 Sep 21.
3
A minimal mechanosensing model predicts keratocyte evolution on flexible substrates.
J R Soc Interface. 2020 May;17(166):20200175. doi: 10.1098/rsif.2020.0175. Epub 2020 May 6.
4
Experiment, theory, and the keratocyte: An ode to a simple model for cell motility.
Semin Cell Dev Biol. 2020 Apr;100:143-151. doi: 10.1016/j.semcdb.2019.10.019. Epub 2019 Nov 9.
5
Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2686-E2695. doi: 10.1073/pnas.1716620115. Epub 2018 Mar 5.
6
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch.
Nat Cell Biol. 2015 Aug;17(8):955-63. doi: 10.1038/ncb3191. Epub 2015 Jun 29.
7
Closing the loop: lamellipodia dynamics from the perspective of front propagation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042708. doi: 10.1103/PhysRevE.88.042708. Epub 2013 Oct 22.
8
Actin disassembly clock determines shape and speed of lamellipodial fragments.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20394-9. doi: 10.1073/pnas.1105333108. Epub 2011 Dec 9.
9
Damped and persistent oscillations in a simple model of cell crawling.
J R Soc Interface. 2012 Jun 7;9(71):1241-53. doi: 10.1098/rsif.2011.0627. Epub 2011 Oct 26.
10
The non-equilibrium thermodynamics and kinetics of focal adhesion dynamics.
PLoS One. 2010 Aug 18;5(8):e12043. doi: 10.1371/journal.pone.0012043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验