Laboratoire Physico-Chimie Curie, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, 75005 Paris, France
Université Pierre et Marie Curie, Sorbonne Universités, 75248 Paris, France.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24670-24678. doi: 10.1073/pnas.2011785117. Epub 2020 Sep 21.
Cell crawling requires the generation of intracellular forces by the cytoskeleton and their transmission to an extracellular substrate through specific adhesion molecules. Crawling cells show many features of excitable systems, such as spontaneous symmetry breaking and crawling in the absence of external cues, and periodic and propagating waves of activity. Mechanical instabilities in the active cytoskeleton network and feedback loops in the biochemical network of activators and repressors of cytoskeleton dynamics have been invoked to explain these dynamical features. Here, I show that the interplay between the dynamics of cell-substrate adhesion and linear cellular mechanics is sufficient to reproduce many nonlinear dynamical patterns observed in spreading and crawling cells. Using an analytical formalism of the molecular clutch model of cell adhesion, regulated by local mechanical forces, I show that cellular traction forces exhibit stick-slip dynamics resulting in periodic waves of protrusion/retraction and propagating waves along the cell edge. This can explain spontaneous symmetry breaking and polarization of spreading cells, leading to steady crawling or bipedal motion, and bistability, where persistent cell motion requires a sufficiently strong transient external stimulus. The model also highlights the role of membrane tension in providing the long-range mechanical communication across the cell required for symmetry breaking.
细胞爬行需要细胞骨架产生细胞内力,并通过特定的粘附分子将其传递到细胞外基质。爬行细胞表现出许多兴奋系统的特征,例如自发对称性破缺和在没有外部线索的情况下爬行,以及周期性和传播性的活动波。为了解释这些动力学特征,人们提出了细胞骨架活性网络中的力学不稳定性和细胞骨架动力学的激活剂和抑制剂的生化网络中的反馈回路。在这里,我表明细胞-基质附着的动力学和线性细胞力学之间的相互作用足以再现许多在扩展和爬行细胞中观察到的非线性动力学模式。使用由局部力学力调节的细胞粘附的分子离合器模型的分析形式,我表明细胞牵引力表现出粘滑动力学,导致突起/缩回的周期性波和沿细胞边缘传播的波。这可以解释扩展细胞的自发对称性破缺和极化,导致稳定的爬行或双足运动,以及双稳定性,其中持续的细胞运动需要足够强的瞬态外部刺激。该模型还突出了膜张力在提供细胞内长程机械通讯以打破对称性方面的作用。