Suppr超能文献

在莱索托的一项基于人群的调查中实施重点超声心动图和人工智能支持的分析:对基于社区的心血管疾病护理模式的影响。

Implementing focused echocardiography and AI-supported analysis in a population-based survey in Lesotho: implications for community-based cardiovascular disease care models.

机构信息

Division of Clinical Epidemiology, University Hospital Basel, Basel, Switzerland.

University of Basel, Basel, Switzerland.

出版信息

Hypertens Res. 2024 Mar;47(3):708-713. doi: 10.1038/s41440-023-01559-6. Epub 2024 Jan 16.

Abstract

In settings where access to expert echocardiography is limited, focused echocardiography, combined with artificial intelligence (AI)-supported analysis, may improve diagnosis and monitoring of left ventricular hypertrophy (LVH). Sixteen nurses/nurse-assistants without prior experience in echocardiography underwent a 2-day hands-on intensive training to learn how to assess parasternal long axis views (PLAX) using an inexpensive hand-held ultrasound device in Lesotho, Southern Africa. Loops were stored on a cloud-drive, analyzed using deep learning algorithms at the University Hospital Basel, and afterwards confirmed by a board-certified cardiologist. The nurses/nurse-assistants obtained 756 echocardiograms. Of the 754 uploaded image files, 628 (83.3%) were evaluable by deep learning algorithms. Of those, results of 514/628 (81.9%) were confirmed by a cardiologist. Of the 126 not evaluable by the AI algorithm, 46 (36.5%) were manually evaluable. Overall, 660 (87.5%) uploaded files were evaluable and confirmed. Following short-term training of nursing cadres, a high proportion of obtained PLAX was evaluable using AI-supported analysis. This could be a basis for AI- and telemedical support in hard-to-reach areas with minimal resources.

摘要

在专业超声心动图检查资源有限的情况下,使用人工智能(AI)辅助分析的重点超声心动图可能有助于改善左心室肥厚(LVH)的诊断和监测。在非洲南部的莱索托,16 名没有超声心动图经验的护士/护士助理接受了为期两天的密集实践培训,学习如何使用廉价的手持式超声设备评估胸骨旁长轴视图(PLAX)。将图像存储在云端,在巴塞尔大学医院使用深度学习算法进行分析,然后由经过董事会认证的心脏病专家确认。护士/护士助理共获得 756 份超声心动图。在上传的 754 个图像文件中,628 个(83.3%)可通过深度学习算法评估。在这些文件中,514/628(81.9%)的结果得到了心脏病专家的确认。在无法通过 AI 算法评估的 126 个文件中,46 个(36.5%)可以手动评估。总的来说,可评估和确认的上传文件有 660 个(87.5%)。在对护理人员进行短期培训后,使用 AI 支持的分析,可评估获得的相当一部分 PLAX。这可能为资源有限的偏远地区提供 AI 和远程医疗支持奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3124/10912015/f00feb1f03dd/41440_2023_1559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验