Suppr超能文献

DegraderTCM:一种预测三元降解复合物的计算节省方法。

DegraderTCM: A Computationally Sparing Approach for Predicting Ternary Degradation Complexes.

作者信息

Rossetti Paolo, Apprato Giulia, Caron Giulia, Ermondi Giuseppe, Rossi Sebastiano Matteo

机构信息

University of Torino, Department of Molecular Biotechnology and Health Sciences, CASSMedChem, Piazza Nizza 44, 10126 Torino, Italy.

出版信息

ACS Med Chem Lett. 2023 Dec 13;15(1):45-53. doi: 10.1021/acsmedchemlett.3c00362. eCollection 2024 Jan 11.

Abstract

Proteolysis targeting chimeras (PROTACs or degraders) represent a novel therapeutic modality that has raised interest thanks to promising results and currently undergoing clinical testing. PROTACs induce the selective proteasomal degradation of undesired proteins by the formation of ternary complexes (TCs). Having knowledge of the 3D structure of TCs is crucial for the design of PROTAC drugs. Here, we describe DegraderTCM, a new computational method for modeling PROTAC-mediated TCs that requires low computational power and provides sound results in a short time span. We validated DegraderTCM against a selected set of experimentally determined structures and defined a method to predict the PROTAC degradation activity based on the computed TC structure. Finally, we modeled TCs of known degraders holding significance for defining the method's applicability domain. A retrospective analysis of structure-activity relationships unveiled possibilities for utilizing DegraderTCM in the initial stages of designing novel PROTAC drugs.

摘要

靶向蛋白降解嵌合体(PROTACs或降解剂)代表了一种新型治疗方式,因其取得的 promising results 而引发了关注,目前正在进行临床试验。PROTACs 通过形成三元复合物(TCs)诱导不需要的蛋白质进行选择性蛋白酶体降解。了解TCs的三维结构对于PROTAC药物的设计至关重要。在此,我们描述了DegraderTCM,这是一种用于模拟PROTAC介导的TCs的新计算方法,该方法所需计算能力低,并能在短时间内提供可靠结果。我们针对一组选定的实验确定结构对DegraderTCM进行了验证,并定义了一种基于计算出的TC结构预测PROTAC降解活性的方法。最后,我们对已知降解剂的TCs进行了建模,这对于定义该方法的适用范围具有重要意义。对构效关系的回顾性分析揭示了在设计新型PROTAC药物的初始阶段利用DegraderTCM的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce8/10788944/7bc976a1bc9d/ml3c00362_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验