Camillo Mayara de Oliveira, Gonçalves Bárbara Maria Mateus, Candido Veronica Scarpini, Dias Luciano Da Costa, Moulin Jordão Cabral, Monteiro Sergio Neves, Oliveira Michel Picanço
Forest and Wood Sciences Department, Federal University of Espírito Santo, Jeronimo Monteiro 29550-000, ES, Brazil.
Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67140-709, PA, Brazil.
Polymers (Basel). 2023 Dec 4;15(23):4614. doi: 10.3390/polym15234614.
The incorporation of natural lignocellulosic fibers as reinforcements in polymer composites has witnessed significant growth due to their biodegradability, cost-effectiveness, and mechanical properties. This study aims to evaluate castor-oil-based polyurethane (COPU), incorporating different contents of coconut coir fibers, 5, 10, and 15 wt%. The investigation includes analysis of the physical, mechanical, and microstructural properties of these composites. Additionally, this study evaluates the influence of hydrothermal treatment on the fibers, conducted at 120 °C and 98 kPa for 30 min, on the biocomposites' properties. Both coir fibers (CFs) and hydrothermal-treated coir fibers (HTCFs) were subjected to comprehensive characterization, including lignocellulosic composition analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The biocomposites were subjected to water absorption analysis, bending tests, XRD, SEM, FTIR, and TGA. The results indicate that the 30 min hydrothermal treatment reduces the extractive content, enhancing the interfacial adhesion between the fiber and the matrix, as evidenced by SEM. Notably, the composite containing 5 wt% CF exhibits a reduced water absorption, approaching the level observed in pure COPU. The inclusion of 15 wt% HTCF results in a remarkable improvement in the composite's flexural strength (100%), elastic modulus (98%), and toughness (280%) compared to neat COPU. TGA highlights that incorporating CFs into the COPU matrix enhances the material's thermal stability, allowing it to withstand temperatures of up to 500 °C. These findings underscore the potential of CFs as a ductile, lightweight, and cost-effective reinforcement in COPU matrix biocomposites, particularly for engineering applications.
由于天然木质纤维素纤维具有生物可降解性、成本效益和机械性能,将其作为增强材料用于聚合物复合材料的情况已显著增加。本研究旨在评估含有5%、10%和15%(重量)不同含量椰壳纤维的蓖麻油基聚氨酯(COPU)。该研究包括对这些复合材料的物理、机械和微观结构性能进行分析。此外,本研究评估了在120℃和98kPa下进行30分钟的水热处理对纤维的影响,以及对生物复合材料性能的影响。对椰壳纤维(CFs)和水热处理椰壳纤维(HTCFs)都进行了全面表征,包括木质纤维素成分分析、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和热重分析(TGA)。对生物复合材料进行了吸水性分析、弯曲试验、XRD、SEM、FTIR和TGA。结果表明,30分钟的水热处理降低了提取物含量,增强了纤维与基体之间的界面粘附力,SEM证明了这一点。值得注意的是,含有5%(重量)CF的复合材料吸水性降低,接近纯COPU中的水平。与纯COPU相比,加入15%(重量)HTCF使复合材料的弯曲强度(提高100%)、弹性模量(提高98%)和韧性(提高280%)有显著改善。TGA突出显示,将CFs加入COPU基体中可提高材料的热稳定性,使其能够承受高达500℃的温度。这些发现强调了CFs作为COPU基体生物复合材料中一种韧性、轻质且经济高效的增强材料的潜力,特别是在工程应用中。