Gregg Christine E, Catanoso Damiana, Formoso Olivia Irene B, Kostitsyna Irina, Ochalek Megan E, Olatunde Taiwo J, Park In Won, Sebastianelli Frank M, Taylor Elizabeth M, Trinh Greenfield T, Cheung Kenneth C
NASA Ames Research Center, Moffett Field, CA, USA.
KBR, Moffett Field, CA, USA.
Sci Robot. 2024 Jan 17;9(86):eadi2746. doi: 10.1126/scirobotics.adi2746.
Versatile programmable materials have long been envisioned that can reconfigure themselves to adapt to changing use cases in adaptive infrastructure, space exploration, disaster response, and more. We introduce a robotic structural system as an implementation of programmable matter, with mechanical performance and scale on par with conventional high-performance materials and truss systems. Fiber-reinforced composite truss-like building blocks form strong, stiff, and lightweight lattice structures as mechanical metamaterials. Two types of mobile robots operate over the exterior surface and through the interior of the system, performing transport, placement, and reversible fastening using the intrinsic lattice periodicity for indexing and metrology. Leveraging programmable matter algorithms to achieve scalability in size and complexity, this system design enables robust collective automated assembly and reconfiguration of large structures with simple robots. We describe the system design and experimental results from a 256-unit cell assembly demonstration and lattice mechanical testing, as well as a demonstration of disassembly and reconfiguration. The assembled structural lattice material exhibits ultralight mass density (0.0103 grams per cubic centimeter) with high strength and stiffness for its weight ( 11.38 kilopascals and 1.1129 megapascals, respectively), a material performance realm appropriate for applications like space structures. With simple robots and structure, high mass-specific structural performance, and competitive throughput, this system demonstrates the potential for self-reconfiguring autonomous metamaterials for diverse applications.
长期以来,人们一直设想有多功能可编程材料,它们能够自我重新配置,以适应自适应基础设施、太空探索、灾难应对等不断变化的使用场景。我们引入了一种机器人结构系统作为可编程物质的一种实现方式,其机械性能和规模与传统高性能材料及桁架系统相当。纤维增强复合材料桁架状积木作为机械超材料,形成坚固、刚硬且轻质的晶格结构。两种类型的移动机器人在系统的外表面和内部运行,利用固有的晶格周期性进行索引和计量,执行运输、放置和可逆紧固操作。借助可编程物质算法实现尺寸和复杂性的可扩展性,这种系统设计能够通过简单的机器人实现大型结构的强大集体自动组装和重新配置。我们描述了该系统设计以及来自256单元电池组装演示、晶格力学测试以及拆卸和重新配置演示的实验结果。组装后的结构晶格材料具有超轻质密度(每立方厘米0.0103克),就其重量而言具有高强度和刚度(分别为11.38千帕斯卡和1.1129兆帕斯卡),这种材料性能领域适用于太空结构等应用。凭借简单的机器人和结构、高质量比结构性能以及有竞争力的吞吐量,该系统展示了用于各种应用的自重新配置自主超材料的潜力。