Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Electronic Components, Technology and Materials, Department of Microelectronics, Delft University of Technology, 2628CT Delft, The Netherlands.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11306-11313. doi: 10.1073/pnas.2001272117. Epub 2020 May 8.
Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.
自组装是一种普遍存在的过程,通过大量简单组件之间的局部相互作用,可以生成复杂而又功能化的结构。能够对组件集的自组装途径进行编程阐明了基本物理原理,并能够实现替代的竞争制造技术。可重编程性为进一步调整结构和材料性能提供了机会,但需要从多稳态自组装模式中进行可逆选择,这仍然是一个挑战。在这里,我们通过轨道晃动和磁排斥毫米级粒子的动态限制,展示了二维(2D)、非紧凑自组装结构的统计可重编程性。在恒定的晃动状态下,我们通过移动硬边界来控制组装竞技场的半径变化率,并可重复、可逆地从有限数量的自组装模式中进行选择。通过暂时将粒子困在拓扑上确定的稳定状态中,我们还证明了自组装结构的 2D 可重新编程的刚度和 3D 磁性抓握。我们的可重编程系统有望应用于多种物理尺度的颗粒材料设计,其中可以通过使用不同数量或类型的粒子来实现非平衡自组装。我们的动态边界调节也可能通过使用移动机器人设计更复杂的时空相互作用,为新型机器人组装应用提供强大的自下而上的控制策略。